W naukach ścisłych profesorowie pracujący w uczelniach akademickich mają porównywalne wskaźniki ze swoimi odpowiednikami pracującymi w instytutach badawczych PAN. To oznacza, iż obciążenie dydaktyczne nie wpływa w istotny sposób na wydajność naukową.

O naszym dorobku naukowym

Keshra Sangwal

d ponad dziesięciu lat aktywność naukowa wydziałów w uczelniach akademickich oraz samodzielnych jednostkach badawczych jest oceniana okresowo co cztery lata w celu dokonania ich kategoryzacji, a następnie przyznania dotacji na badania statutowe na następne trzy lata. Podobnie działalność naukowa pracowników naukowo-dydaktycznych w uczelniach była do tej pory oceniana co roku w celu przyznania grantów wewnętrznych na następny rok. Oceny te są oparte na sumowaniu punktów otrzymanych przez wydziały i indywidualnych pracowników za ich publikacje naukowe w ocenianym okresie w czasopismach z tak zwanej listy ministerialnej, opracowanej przez MNiSW. Większość czasopism pojawiających się na tej liście znajduje się również na listach czasopism w różnych bazach bibliograficznych, jest jednak wiele czasopism, zwłaszcza w języku polskim, które są rzadko cytowane w renomowanych czasopismach naukowych.

W nieustannej dyskusji na temat obecnej kondycji nauki polskiej skala ocen waha się od czarnej do różowej. Zwolennicy czarnej oceny uważają, że już najwyższy czas, abyśmy zaczęli wybijać się z naukowego dna przez wprowadzenie odpowiednich mechanizmów w polityce kadrowej i finansowania nauki. Według zwolenników różowej oceny wszystko jest fajnie, skoro możemy publikować we "w miarę" dobrych czasopismach światowych. Prawdą jest, iż częściowo mają rację i pierwsi, i drudzy. Pierwsi wystawiają ocenę na podstawie tego, co się dzieje w ich otoczeniu, na szczeblu katedr i wydziałów w uczelni. Drudzy oceniają stan nauki polskiej na podstawie bardzo ogólnego, wybiórczego oglądu dobrze publikujących zespołów naukowców, pracujących daleko od strumienia naukowego przeciętnego, środowiskowego pracownika naukowo-dydaktycznego. Oczywiście, jak się mówi potocznie: punkt widzenia zależy od miejsca siedzenia. W związku z tym warto analizować i oceniać nasze punkty widzenia, korzystając z baz bibliograficznych zawierających prawdziwe liczby w postaci cytowań prac naukowych naszych pracowników. Na pewno liczby mówią same za siebie i są obiektywne.

Nasi naukowcy

Jest kilka baz bibliograficznych, gdzie można znaleźć cytowania dowolnego artykułu naukowego dowolnego autora. Można tu wymienić np. bazy: Google Scholar, Scopus grupy Elsevier Science, ISI Web of Knowledge firmy Thomson Reuters. Korzystałem z bazy ISI Web of Knowledge, która w swoich zbiorach ma dane o publikacjach od 1961 roku i można na jej podstawie identyfikować autorów o takich samych nazwiskach i imionach dzięki ich afiliacji. Jest to istotne, ponieważ cytowania autorów na ogół sumują się, a w następstwie tego dają wyższą średnią cytowań na rok oraz tzw. (i wszechobecny) wskaźnik Hirscha h.

Do analizy zbierałem dane odnoszące się do cytowań dziewięciu profesorów z różnych wydziałów Politechniki Lubelskiej (PL) oraz sześciu profesorów pracujących w różnych innych instytucjach w kraju (nie-PL). Trzech z tych ostatnich pracuje w PAN, dwóch w Politechnice Warszawskiej, a dwóch ma podwójną afiliację. Dokonując wyboru brano pod uwagę podobny profil badawczy i specjalność. Na przykład pośród fizyków

Autor	Funkcja, dyscyplina	N (t)	L (L*)	h	R	S = L/Nt
P-1	PR, T	42 (19)	102 (57)	6	5,7	0,1248
P-2	PR, Dziekan, Ch	39 (36)	89 (57)	4	5,3	0,0634
P-3	PR, Ch	31 (20)	219 (196)	7 19 00	8,3	0,3532
P-4	Dziekan, T	79 (14)	37 (8)	3	3,4	0,0334
P-5	Dziekan, T	29 (24)	5 (5)	171821-3	1,3	0,0072
P-6 M. Kosmulski (MK)	Ch	138 (33)	1759 (1075)	23	23,7	0,3863
P-7 K. Sangwal (KS)	e bellosia di Rospitili di scritta Escitasso entre	152 (40)	1487 (657)	20	21,8	0,2446
P-8	olinda Few stendards a	53 (22)	281 (166)	10	9,5	0,2410
P-9	Englander State	87 (19)	469 (186)	12	12,2	0,2837

Tabela 1: Parametry aktywności wybranych profesorów PL

życie akademickie

czterech zajmuje się problemami krystalizacji. Zarówno profesorowie PL, jak i nie-PL są znani w naszym środowisku z racji swojej aktywności naukowej lub organizacyjno-administracyjnej na forach uczelnianych czy krajowych.

Wśród wybranych profesorów trzech specjalizuje się w naukach chemicznych (Ch), pięciu w naukach technicznych (T), a siedmiu w naukach fizycznych (F). Dwóch z dziewięciu profesorów PL było (i jeden jest obecnie) prorektorami ds. nauki, trzech z nich jest dziekanami różnych wydziałów, a sześciu nie było do tej pory specjalnie zaangażowanych w pracy administracyjnej. Jeden z profesorów nie-PL był rektorem Politechniki Warszawskiej. Okres publikacyjny t wybranych profesorów waha się między 19 i 40 lat. Dane bibliograficzne profesorów PL i nie-PL zbierano odpowiednio 19-20 listopada i 10 grudnia 2010 roku. Podstawowe dane bibliograficzne obejmujące liczby publikowanych artykułów N, okres publikacyjny t, liczby całkowitych cytowań L, liczby cytowań L* bez autocytowań, wskaźnik Hirscha h podano w tabelach 1 i 2 odpowiednio dla profesorów PL i nie-PL. Ogólnie w celu utrzymania anonimowości danych większości profesorów PL i nie-PL zaznaczono ich jako P i N w tabelach.

Wskaźnik Hirscha *h* danego autora definiuje się jako najwyższą liczbę jego artykułów, która otrzymała *h* lub więcej cytowań. To oznacza, że wskaźnik *h* nie uwzględnia wszystkich cytowań otrzymywanych przez *h* artykułów z cytowaniami powyżej *h* i (*N*–*h*) artykułów mających cytowania mniej niż *h*. W związku z tym autor tego artykułu wprowadził pojęcie promienia przestrzeni cytowań *R*, który jest równy pierwiastkowi ilorazu liczby cytowań *L* do π tj. *R* = (*L*/ π)^{1/2} (patrz: Tabele 1 i 2). W wielu przypadkach jest on równy wskaźnikowi *h*.

Z wartości wskaźników h i R podanych w tabelach 1 i 2 można wyciągnąć następujące wnioski:

Profesorowie nauk fizycznych i chemicznych są bardziej aktywni naukowo od ich kolegów specjalizujących się w naukach technicznych. Jedynym wyjątkiem jest tutaj P-2.

W naukach ścisłych profesorowie pracujący w uczelniach akademickich mają porównywalne wskaźniki *h* i *R* ze swoimi odpowiednikami pracującymi w instytutach badawczych PAN, gdzie nie ma obciążenia dydaktycznego. To oznacza, iż obciążenie dydaktyczne nie wpływa w istotny sposób na wydajność naukową profesorów uczelni akademickich.

W przypadku profesorów piastujących funkcje administracyjne rektora, prorektora czy dziekana wskaźniki *h* i *R* zwykle są niskie. Tabela 2: Parametry aktywności wybranych profesorów nie-PL

Autor	Funkcja, dyscyplina	N (t)	L (L*)	h	R	S = L/Nt
N-1	F	103 (29)	909 (644)	17	17,0	0,3043
N-2	Follow Dwoodw	85 (32)	505 (277)	12	12,7	0,1857
N-3 J. Barnaś (JB)	F	286 (28)	2922 (1465)	30	30,5	0,3649
N-4 T. Dietl (TD)	F	289 (36)	10278 (6084)	41	57,2	0,9879
N-5	T	266 (29)	903 (570)	13	17,0	0,1171
N-6	R, T	17 (31)	50 ()	2	4,0	0,0949

Wskaźniki h i R są bardzo niskie w przypadku np. P-4 i P-5 (tabela 1). Tak niskie wartości tych wskaźników wiążą się głównie z faktem, że profesorowie ci publikowali większość swoich artykułów w czasopismach lokalnych, odpowiednio w języku polskim i rosyjskim.

Publikacja artykułów w materiałach konferencyjnych z konferencji ogólnokrajowych ma duży wpływ na zaniżenie wartości wskaźników h i R (np. mimo dużej liczby artykułów P-4).

Stosunek liczby cytowań L^* bez autocytowań do całkowitej liczby cytowań Lkształtuje się ogólnie między 0,4-0,6. Są jednak sytuacje, gdy stosunek L^*/L osiąga wartość tak niską jak 0,2 (np. P-4), jak i 1 (np. P-5). Bardzo niska wartość L^*/L jest wynikiem publikacji artykułów przez autorów w materiałach konferencyjnych z konferencji ogólnokrajowych, podczas gdy wysoka wartość L^*/L jest wynikiem publikacji artykułów w czasopismach nieanglojęzycznych (np. rosyjskich), których angielskie tłumaczenie następnie cytowano.

Należy zwrócić uwagę na to, że zarówno wskaźnik h, jak i wskaźnik R nie dostarczają informacji o liczbie artykułów publikowanych N ani o czasie t ich publikowania. Wskaźniki te są miarą wydajności naukowej, a nie są miarą efektywności naukowej. To powoduje, że powstają sytuacje, gdy dany autor pracując dłużej i publikując więcej artykułów osiąga tę samą wartość h lub R w porównaniu z jego odpowiednikiem publikującym w krótszym czasie mniej, ale dobrych artykułów. Na przykład dwaj fizycy P-9 i N-2 opublikowali podobną liczbę artykułów i mają wskaźnik h = 12, jednak pierwszy osiagnął ten sam wynik po 19 latach, a drugi po 32 latach. Podobnie N-2 i N-5 mają zbliżony okres publikacyjny i porównywalny h, ale pierwszy osiągnął ten cel publikując 89 artykułów, a N-5 publikując ponad trzykrotnie więcej artykułów. Innym słowy, jeden autor osiąga cel dzięki pracowitości, a drugi dzięki inteligencji.

W celu rozróżnienia pracowitych i inteligentnych autorów, można wprowadzić pojęcie wskaźnika przestrzeni cytowań S = L/Nt, który jest pozbawiony mankamentów wskaźnika R. Ponadto jest bardzo czuły na zmiany wszystkich zmiennych. Na przykład w porównaniu ze wskaźnikiem h w tabelach 1 i 2 dla profesorów polskich, który waha się pomiędzy 1 i 41, zmiany w S są prawie 140-krotne. Powinniśmy jednak pamiętać, iż liczba L cytowań artykułów danego naukowca silnie zależy od dziedziny czy dyscypliny naukowej oraz od liczby N opublikowanych artykułów i okresu t działalności naukowej. Ponadto, ponieważ okres cytowania danego artykułu jest ogólnie ograniczony i waha się od 5 do 10 lat, iloczyn L/Nt dla różnych autorów działających w tej samej dziedzinie słabo rośnie z upływem czasu t. W związku z tym porównanie wskaźników h, R czy S dla dwóch naukowców jest ogólnie ryzykowne i niemiarodajne. Ogólnie, w celu porównania aktywności dwóch autorów należy brać pod uwagę liczby N artykułów publikowanych przez nich oraz okres t działalności naukowej.

Sądzę, że progowa wartość wskaźnika S dla widoczności naukowca w strumieniu nauki wynosi 0,1. Powinniśmy jednak pamiętać, że po pierwszym artykule prawie wszystkie następne zawierają autocytowania prac autora, a w wielu przypadkach kilku autorów tworzy dany artykuł. Wskaźnik S jest idealny do ustalenia i określenia wpływu takich czynników, jak autocytowania i współautorstwa. Jest to dodatkowa zaleta wskaźnika S, a jego progowa wartość 0,1 nie jest wygórowana.

Nasi a królewscy

Niedawno Anderson, Hankin & Killworth ("Scientometrics", 76, 577, 2008) przeanalizowali wydajność publikacyjną i liczby cytowań przypadkowo wylosowanych sześciu naukowców, wybranych w roku 2006 na członków Towarzystwa Królewskiego. Oryginalne dane dotyczące liczby artykułów N, okresu publikacji t, liczby wszystkich cytowań Li wskaźnika Hirscha h oraz policzone wartości wskaźników R i S są umieszczone w tabeli 3.

Porównanie wskaźników h i R profesorów polskich z tabeli 2 i naukowców

Tabela 3: Parametry aktywności członków wybranych w 2006 roku do Towarzystwa Królewskiego

Naukowiec	N (t)	L	h	R	S = L/Nt
D. Badford (DB)	78 (20)	6281	44	44.7	4.026
A.D. Becke (ADB)	55 (28)	40094	35	113	26.035
M. Lockwood (ML)	176 (25)	5101	39	40.3	1.159
R.J. Jackson	79 (36)	10778	44	58.6	3.790
M.R.E. Proctor (MREP)	89 (31)	2356	26	27.4	0.854
H.R. Saibil	80 (30)	4234	33	36.7	1.764

"królewskich" pokazuje, że wydajność naukowa dwóch naszych profesorów NP-3 (JB) i NP-4 (TD) na pewno jest porównywalna z wydajnością dwóch naukowców królewskich (ML i MREP), natomiast ADB jest niekwestionowanym królem w gronie rozważanych profesorów. Ma on bardzo wysoki wskaźnik S: prawie 6,5-krotnie wyższy od jego rodaka DB, drugiego w rankingu, a ponad 26-krotnie wyższy od najlepszego naukowca polskiego NP-4 (TD). ADP opublikował jedynie 55 artykułów w ciągu 28 lat (tzn. średnio mniej niż dwa artykuły rocznie) i ma niewysoki wskaźnik h, nawet niższy od naszego rodaka NP-4 (TD).

Z powyższych porównań można wywnioskować, że nawet w warunkach polskich naukowcy mogą się chwalić swoimi osiągnięciami. Wniosek ten jest w zgodzie z wyżej wspomnianą oceną różową. Należy jednak pamiętać, że NP-3 (JB) i NP-4 (TD) opublikowali sporo artykułów współpracując z różnymi naukowcami zagranicznymi, a niektórzy z tych zagranicznych współautorów dostali nawet Nagrodę Nobla. Powstaje więc pytanie, czy pracując jedynie za granicą lub we współpracy z zagranicą można osiągnąć szczyt naukowy? Na podstawie powyższych wskaźników trudno to ocenić, bowiem nawet zagraniczni naukowcy współpracują w zespołach złożonych z młodych doktorantów i tak zwanych "postdoków" z zagranicy.

Dorobek naukowców wybranego wydziału

Warto rozważyć teraz ocenę dorobku naukowego kadry typowej dla wielu wydziałów uczelni akademickich średniej wielkości. Skład kadry naukowo-dydaktycznej jednego z wydziałów naszej uczelni stanowi: 4 profesorów zwyczajnych, 8 profesorów nadzwyczajnych, 17 adiunktów i 6 asystentów. Za aktywność naukową pracowników naukowo-dydaktycznych wydział ten ma kategorię B MNiSW do dotacji statutowej. Podstawowe dane zebrano w dniach 19-20 listopada 2010 roku z wyżej podanych baz bibliograficznyh Thomsona World of Knowledge.

Opracowanie danych wykazało, że wśród profesorów, oprócz dwóch fizyków, cała kadra samodzielna ma wskaźnik S poniżej 0,08, a trzy osoby z tego grona są kierownikami katedr. W tej kadrze samodzielnej aż 4 profesorów (w tym 2 kierowników katedr) ma nawet wskaźnik S równy zeru z tej prostej przyczyny, iż albo nie mają oni żadnego artykułu, albo żadnego cytowania w zbiorach baz. Ponadto wszyscy adiunkci-fizycy mają wskaźnik S między 0,17 i 0,34, a pośród 4 adiunktów-matematyków aż 3 ma dobry wskaźnik S między 0,11 i 1,25. Pozostałych 9 adiunktów, związanych z naukami technicznymi i pedagogicznymi, jest prawie nieaktywnych naukowo. Wskaźnik S dla prawie wszystkich asystentów z kilkuletnim stażem pracy jest równy zeru.

W świetle powyższej analizy danych bibliograficznych jest oczywiste, że aktywność naukowa kadry naukowo-dydaktycznej w uczelniach akademickich jest bardzo zróżnicowana, a niektóre osoby wykazują aktywność naukową nie gorszą od profesorów jednostek PAN. Lwia część tej kadry, w tym kierownicy katedr, nie wykazuje jednak żadnego zainteresowania badaniami naukowymi.

W środowisku akademickim krążą różnorodne mity o publikowaniu artykułów naukowych w dobrych czasopismach. Niektóre z nich podano niżej:

- początkujący asystent powinien najpierw nabierać praktyki poprzez drukowanie pierwszych prac w krajowych czasopismach, najlepiej w języku ojczystym;
- w naukach ścisłych łatwiej publikować;
- niektóre tematy badawcze nawet w jednej dyscyplinie/specjalności są ła-
- twiejsze;
 w dobrych czasopismach można publikować, jeżeli znasz redaktora;
- jeżeli znasz biegle język angielski, to możesz publikować łatwo w dobrym czasopiśmie;
- trzeba wnieść opłatę za druk w dobrych czasopismach niektórych dyscyplin.

Należy zaznaczyć, że twórcami powyższego rodzaju mitów są "naukowcy", którzy przez całe życie powiększali "dorobek naukowy" poprzez drukowanie twórczości naukowej w tzw. zeszytach naukowych lub pracach naukowych uczelni. W zasadzie są oni opiniodawcami w sprawach naukowych z racji zajmowanych stanowisk, np. kierowników katedr. Jednostki kierowane przez taką naukowo nieaktywną kadrę z upływem czasu osiągają "dno naukowe". Korelacja pomiędzy aktywnością naukową kierowników katedr w naszych uczelniach akademickich a aktywnością naukową adiunktów i asystentów tychże katedr jest uderzająca. Niestety na wybicie z takiego dna jest potrzebny wysiłek jeszcze co najmniej jednego pokolenia, pod warunkiem, że uczelnia dotrwa do tego czasu.

Kondycja nauki Kowalskiego

Prawie cała słabo aktywna naukowo kadra samodzielna zatrudniona w naszych uczelniach akademickich, w tym kierownicy katedr, od lat pracuje na dwóch (i być może na trzech) etatach w państwowych i niepaństwowych szkołach wyższych w okolicy. Dodatkowe zatrudnienie profesorów uczelni akademickich jest wynikiem kilku czynników. Profesorowie ci nie czują się na siłach prowadzić badań naukowych i są świadomi swoich ograniczeń. Tak więc pozostawiają naukę na barkach młodszych kolegów, którzy dopisują w publikacjach nazwiska szefów w ramach swoich powinności. Uczelnie również nie wymagają od nich, aby prowadzili badania naukowe, a koledzy z podwórka zapewniają przedłużenie ich zatrudnienia na wcześniej piastowanym stanowisku oraz funkcję kierownika katedry, niezależnie od dorobku w okresie oceny. Wady kolejnych ustaw o szkolnictwie wyższym na to wszystko pozwalają i szkodzą nauce polskiej.

W celu poprawienia obecnego stanu nauki w naszych uczelniach konieczne są drastyczne zmiany w polityce kadrowej, dotyczące awansów i zatrudniania nauczycieli akademickich oraz w polityce powierzania funkcji kierowniczych. Należy zatrudniać i awansować tych, którzy na to zasługują. Ponadto należy zmienić wszechobecny system antymotywacyjny, dzisiaj funkcjonujący w naszych uczelniach poprzez opracowanie i uruchomienie odpowiedniego mechanizmu motywacyjnego, niezbędnego do poprawiania jakości i wydajności pracy naukowej przeciętnego nauczyciela akademickiego. Jest to jedyna droga do naprawienia kondycji nauki polskiej.

Prof. dr hab. **Keshra Sangwal**, fizyk, specjalista w zakresie fizyki krystalizacji i własności mechanicznych ciał krystalicznych i niekrystalicznych, kierownik Katedry Fizyki Stosowanej na Wydziale Podstaw Techniki Politechniki Lubelskiej; współzałożyciel Polskiego Towarzystwa Wzrostu Kryształów w 1991 roku, a w latach 1998-2001 jego prezes.