W naukach ścistych profesorowie pracujqcy w uczelniach akademickich majq porównywalne wskaźniki ze swoimi odpowiednikami pracujacymi w instytutach badawczych PAN. To oznacza, iż obciaqżenie dydaktyczne nie wpływa w istotny sposób na wydajność naukowq.

O naszym dorobku naukowym

Keshra Sangwal

0d ponad dziesięciu lat aktywność naukowa wydziałów w uczelniach akademickich oraz samodzielnych jednostkach badawczych jest oceniana okresowo co cztery lata w celu dokonania ich kategoryzacji, a następnie przyznania dotacji na badania statutowe na następne trzy lata. Podobnie działalność naukowa pracowników naukowo-dydaktycznych w uczelniach była do tej pory oceniana co roku w celu przyznania grantów wewnętrznych na następny rok. Oceny te są oparte na sumowaniu punktów otrzymanych przez wydziały i indywidualnych pracowników za ich publikacje naukowe w ocenianym okresie w czasopismach z tak zwanej listy ministerialnej, opracowanej przez MNiSW. Większość czasopism pojawiających się na tej liście znajduje się również na listach czasopism w różnych bazach bibliograficznych, jest jednak wiele czasopism, zwłaszcza w języku polskim, które są rzadko cytowane w renomowanych czasopismach naukowych.

W nieustannej dyskusji na temat obecnej kondycji nauki polskiej skala ocen waha się od czarnej do różowej.

Zwolennicy czarnej oceny uważają, że już najwyższy czas, abyśmy zaczęli wybijać się z naukowego dna przez wprowadzenie odpowiednich mechanizmów w polityce kadrowej i finansowania nauki. Według zwolenników różowej oceny wszystko jest fajnie, skoro możemy publikować we „w miarę" dobrych czasopismach światowych. Prawdą jest, iż częściowo mają rację i pierwsi, i drudzy. Pierwsi wystawiają ocenę na podstawie tego, co się dzieje w ich otoczeniu, na szczeblu katedr i wydziałów w uczelni. Drudzy oceniają stan nauki polskiej na podstawie bardzo ogólnego, wybiórczego oglądu dobrze publikujących zespołów naukowców, pracujących daleko od strumienia naukowego przeciętnego, środowiskowego pracownika naukowo-dydaktycznego. Oczywiście, jak się mówi potocznie: punkt widzenia zależy od miejsca siedzenia. W związku z tym warto analizować i oceniać nasze punkty widzenia, korzystając z baz bibliograficznych zawierających prawdziwe liczby w postaci cytowań prac naukowych naszych pracowników. Na pewno liczby mówią same za siebie i są obiektywne.

Nasi naukowcy

Jest kilka baz bibliograficznych, gdzie można znaleźć cytowania dowolnego artykułu naukowego dowolnego autora. Można tu wymienić np. bazy: Google Scholar, Scopus grupy Elsevier Science, ISI Web of Knowledge firmy Thomson Reuters. Korzystałem z bazy ISI Web of Knowledge, która w swoich zbiorach ma dane o publikacjach od 1961 roku i można na jej podstawie identyfikować autorów o takich samych nazwiskach i imionach dzięki ich afiliacji. Jest to istotne, ponieważ cytowania autorów na ogół sumują się, a w następstwie tego dają wyższą średnią cytowań na rok oraz tzw. (i wszechobecny) wskaźnik Hirscha h.

Do analizy zbierałem dane odnoszące się do cytowań dziewięciu profesorów z różnych wydziałów Politechniki Lubelskiej (PL) oraz sześciu profesorów pracujących w różnych innych instytucjach w kraju (nie-PL). Trzech z tych ostatnich pracuje w PAN, dwóch w Politechnice Warszawskiej, a dwóch ma podwójną afiliację. Dokonując wyboru brano pod uwage podobny profil badawczy i specjalność. Na przykład pośród fizyków

Tabela 1: Parametry aktywności wybranych profesorów PL

Autor	Funkcja, dyscyplina	$N(t)$	L (${ }^{*}$)	h	R	$\mathrm{S}=\mathrm{L} / \mathrm{Nt}$
P-1	PR, T	42 (19)	102 (57)	6	5,7	0,1248
P-2	PR, Dziekan, Ch	39 (36)	89 (57)	4	5,3	0,0634
P-3	PR, Ch	31 (20)	219 (196)	7	8,3	0,3532
P-4	Dziekan, T	79 (14)	37 (8)	3	3,4	0,0334
P-5	Dziekan, T	29 (24)	5 (5)	1	1,3	0,0072
P-6 M. Kosmulski (MK)	Ch	138 (33)	1759 (1075)	23	23,7	0,3863
$\begin{array}{\|l\|} \hline \text { P-7 } \\ \text { K. Sangwal (KS) } \end{array}$	F	152 (40)	1487 (657)	20	21,8	0,2446
P-8	F	53 (22)	281 (166)	10	9,5	0,2410
P-9	F	87 (19)	469 (186)	12	12,2	0,2837

czterech zajmuje się problemami krystalizacji. Zarówno profesorowie PL, jak i nie-PL są znani w naszym środowisku z racji swojej aktywności naukowej lub organizacyjno-administracyjnej na forach uczelnianych czy krajowych.

Wśród wybranych profesorów trzech specjalizuje się w naukach chemicznych (Ch), pięciu w naukach technicznych (T), a siedmiu w naukach fizycznych (F). Dwóch z dziewięciu profesorów PL było (i jeden jest obecnie) prorektorami ds. nauki, trzech z nich jest dziekanami różnych wydziałów, a sześciu nie było do tej pory specjalnie zaangażowanych w pracy administracyjnej. Jeden z profesorów nie-PL był rektorem Politechniki Warszawskiej. Okres publikacyjny t wybranych profesorów waha się między 19 i 40 lat. Dane bibliograficzne profesorów PL i nie-PL zbierano odpowiednio 19-20 listopada i 10 grudnia 2010 roku. Podstawowe dane bibliograficzne obejmujące liczby publikowanych artykułów N, okres publikacyjny t, liczby całkowitych cytowań L, liczby cytowań L^{*} bez autocytowań, wskaźnik Hirscha h podano w tabelach 1 i 2 odpowiednio dla profesorów PL i nie-PL. Ogólnie w celu utrzymania anonimowości danych większości profesorów PL i nie-PL zaznaczono ich jako P i N w tabelach.

Wskaźnik Hirscha h danego autora definiuje się jako najwyższą liczbę jego artykułów, która otrzymała h lub więcej cytowań. To oznacza, że wskaźnik h nie uwzględnia wszystkich cytowań otrzymywanych przez h artykułów z cytowaniami powyżej $h \mathrm{i}(N-h)$ artykułów mających cytowania mniej niż h. W związku z tym autor tego artykułu wprowadził pojęcie promienia przestrzeni cytowań R, który jest równy pierwiastkowi ilorazu liczby cytowań L do $\pi \mathrm{tj} . R=(L / \pi)^{1 / 2}$ (patrz: Tabele 1 i 2). W wielu przypadkach jest on równy wskaźnikowi h.

Z wartości wskaźników h i R podanych w tabelach 1 i 2 można wyciągnąć następujące wnioski:

Profesorowie nauk fizycznych i chemicznych są bardziej aktywni naukowo od ich kolegów specjalizujących się w naukach technicznych. Jedynym wyjątkiem jest tutaj P-2.

W naukach ścisłych profesorowie pracujący w uczelniach akademickich mają porównywalne wskaźniki h i R ze swoimi odpowiednikami pracującymi w instytutach badawczych PAN, gdzie nie ma obciążenia dydaktycznego. To oznacza, iż obciążenie dydaktyczne nie wpływa w istotny sposób na wydajność naukową profesorów uczelni akademickich.

W przypadku profesorów piastujących funkcje administracyjne rektora, prorektora czy dziekana wskaźniki h i R zwykle są niskie.

Tabela 2: Parametry aktywności wybranych profesorów nie-PL

Autor	Funkcja, dyscyplina	$N(t)$	$L\left(L^{*}\right)$	h	R	$S=L / N t$
N-1	F	$103(29)$	$909(644)$	17	17,0	0,3043
N-2	F	$85(32)$	$505(277)$	12	12,7	0,1857
N-3 J. Barnaś (JB)	F	$286(28)$	$2922(1465)$	30	30,5	0,3649
N-4 T. Dietl (TD)	F	$289(36)$	$10278(6084)$	41	57,2	0,9879
N-5	T	$266(29)$	$903(570)$	13	17,0	0,1171
N-6	R,T	$17(31)$	$50(-)$	2	4,0	0,0949

Wskaźniki h i R są bardzo niskie w przypadku np. P-4 i P-5 (tabela 1). Tak niskie wartości tych wskaźników wiążą się głównie z faktem, że profesorowie ci publikowali większość swoich artykułów w czasopismach lokalnych, odpowiednio w języku polskim i rosyjskim.

Publikacja artykułów w materiałach konferencyjnych z konferencji ogólnokrajowych ma duży wpływ na zaniżenie wartości wskaźników h i R (np. mimo dużej liczby artykułów P-4).

Stosunek liczby cytowań L^{*} bez autocytowań do całkowitej liczby cytowań L kształtuje się ogólnie między $0,4-0,6$. Są jednak sytuacje, gdy stosunek L^{*} / L osiąga wartość tak niską jak 0,2 (np. P-4), jak i 1 (np. P-5). Bardzo niska wartość L^{*} / L jest wynikiem publikacji artykułów przez autorów w materiałach konferencyjnych z konferencji ogólnokrajowych, podczas gdy wysoka wartość L^{*} / L jest wynikiem publikacji artykułów w czasopismach nieanglojęzycznych (np. rosyjskich), których angielskie tłumaczenie następnie cytowano.

Należy zwrócić uwagę na to, że zarówno wskaźnik h, jak i wskaźnik R nie dostarczają informacji o liczbie artykułów publikowanych N ani o czasie t ich publikowania. Wskaźniki te są miarą wydajności naukowej, a nie są miarą efektywności naukowej. To powoduje, że powstają sytuacje, gdy dany autor pracując dłużej i publikując więcej artykułów osiąga tę samą wartość h lub R w porównaniu z jego odpowiednikiem publikującym w krótszym czasie mniej, ale dobrych artykułów. Na przykład dwaj fizycy P-9 i N-2 opublikowali podobną liczbę artykułów i mają wskaźnik $h=12$, jednak pierwszy osiągnął ten sam wynik po 19 latach, a drugi po 32 latach. Podobnie N-2 i N-5 mają zbliżony okres publikacyjny i porównywalny h, ale pierwszy osiągną $\}$ ten cel publikując 89 artykułów, a N-5 publikując ponad trzykrotnie więcej artykułów. Innym słowy, jeden autor osiąga cel dzięki pracowitości, a drugi dzięki inteligencji.

W celu rozróżnienia pracowitych i inteligentnych autorów, można wprowadzić pojęcie wskaźnika przestrzeni cytowań $S=L / N t$, który jest pozbawiony
mankamentów wskaźnika R. Ponadto jest bardzo czuły na zmiany wszystkich zmiennych. Na przykład w porównaniu ze wskaźnikiem h w tabelach 1 i 2 dla profesorów polskich, który waha się pomiędzy 1 i 41, zmiany w S są prawie 140-krotne. Powinniśmy jednak pamiętać, iż liczba L cytowań artykułów danego naukowca silnie zależy od dziedziny czy dyscypliny naukowej oraz od liczby N opublikowanych artykułów i okresu t działalności naukowej. Ponadto, ponieważ okres cytowania danego artykułu jest ogólnie ograniczony i waha się od 5 do 10 lat, iloczyn $L / N t$ dla różnych autorów działających w tej samej dziedzinie słabo rośnie z upływem czasu t. W związku z tym porównanie wskaźników h, R czy S dla dwóch naukowców jest ogólnie ryzykowne i niemiarodajne. Ogólnie, w celu porównania aktywności dwóch autorów należy brać pod uwagę liczby N artykułów publikowanych przez nich oraz okres t działalności naukowej.

Sądzę, że progowa wartość wskaźnika S dla widoczności naukowca w strumieniu nauki wynosi 0,1 . Powinniśmy jednak pamiętać, że po pierwszym artykule prawie wszystkie następne zawierają autocytowania prac autora, a w wielu przypadkach kilku autorów tworzy dany artykuł. Wskaźnik S jest idealny do ustalenia i określenia wpływu takich czynników, jak autocytowania i współautorstwa. Jest to dodatkowa zaleta wskaźnika S, a jego progowa wartość 0,1 nie jest wygórowana.

Nasi a królewscy

Niedawno Anderson, Hankin \& Killworth („Scientometrics", 76, 577, 2008) przeanalizowali wydajność publikacyjną i liczby cytowań przypadkowo wylosowanych sześciu naukowców, wybranych w roku 2006 na członków Towarzystwa Królewskiego. Oryginalne dane dotyczące liczby artykułów N, okresu publikacji t, liczby wszystkich cytowań L i wskaźnika Hirscha h oraz policzone wartości wskaźników R i S są umieszczone w tabeli 3.

Porównanie wskaźników h i R profesorów polskich z tabeli 2 i naukowców

Tabela 3: Parametry aktywności członków wybranych w 2006 roku do Towarzystwa Królewskiego

Naukowiec	$N(t)$	L	h	R	S = L/Nt
D. Badford (DB)	$78(20)$	6281	44	44.7	4.026
A.D. Becke (ADB)	$55(28)$	40094	35	113	26.035
M. Lockwood (ML)	$176(25)$	5101	39	40.3	1.159
R.J. Jackson	$79(36)$	10778	44	58.6	3.790
M.R.E. Proctor (MREP)	$89(31)$	2356	26	27.4	0.854
H.R. Saibil	$80(30)$	4234	33	36.7	1.764

„królewskich" pokazuje, że wydajność naukowa dwóch naszych profesorów NP-3 (JB) i NP-4 (TD) na pewno jest porównywalna z wydajnością dwóch naukowców królewskich (ML i MREP), natomiast ADB jest niekwestionowanym królem w gronie rozważanych profesorów. Ma on bardzo wysoki wskaźnik S: prawie 6,5 -krotnie wyższy od jego rodaka DB , drugiego w rankingu, a ponad 26-krotnie wyższy od najlepszego naukowca polskiego NP-4 (TD). ADP opublikował jedynie 55 artykułów w ciągu 28 lat (tzn. średnio mniej niż dwa artykuły rocznie) i ma niewysoki wskaźnik h, nawet niższy od naszego rodaka NP-4 (TD).

Z powyższych porównań można wywnioskować, że nawet w warunkach polskich naukowcy mogą się chwalić swoimi osiągnięciami. Wniosek ten jest w zgodzie z wyżej wspomnianą oceną różową. Należy jednak pamiętać, że NP-3 (JB) i NP-4 (TD) opublikowali sporo artykułów współpracując z różnymi naukowcami zagranicznymi, a niektórzy z tych zagranicznych współautorów dostali nawet Nagrodę Nobla. Powstaje więc pytanie, czy pracując jedynie za granicą lub we współpracy z zagranicą można osiągnąć szczyt naukowy? Na podstawie powyższych wskaźników trudno to ocenić, bowiem nawet zagraniczni naukowcy współpracują w zespołach złożonych z młodych doktorantów i tak zwanych „postdoków" z zagranicy.

Dorobek naukowców wybranego wydziału

Warto rozważyć teraz ocenę dorobku naukowego kadry typowej dla wielu wydziałów uczelni akademickich średniej wielkości. Skład kadry naukowo-dydaktycznej jednego z wydziałów naszej uczelni stanowi: 4 profesorów zwyczajnych, 8 profesorów nadzwyczajnych, 17 adiunktów i 6 asystentów. Za aktywność naukową pracowników naukowo-dydaktycznych wydział ten ma kategorię B MNiSW do dotacji statutowej. Podstawowe dane zebrano w dniach 19-20 listopada 2010 roku z wyżej podanych baz bibliograficznyh Thomsona World of Knowledge.

Opracowanie danych wykazało, że wśród profesorów, oprócz dwóch fizyków, cała kadra samodzielna ma wskaźnik S poniżej 0,08 , a trzy osoby z tego grona są kierownikami katedr. W tej kadrze samodzielnej aż 4 profesorów (w tym 2 kierowników katedr) ma nawet wskaźnik S równy zeru z tej prostej przyczyny, iż albo nie mają oni żadnego artykułu, albo żadnego cytowania w zbiorach baz. Ponadto wszyscy ad-iunkci-fizycy mają wskaźnik S między 0,17 i 0,34 , a pośród 4 adiunktów-matematyków aż 3 ma dobry wskaźnik S między 0,11 i 1,25 . Pozostałych 9 adiunktów, związanych z naukami technicznymi i pedagogicznymi, jest prawie nieaktywnych naukowo. Wskaźnik S dla prawie wszystkich asystentów z kilkuletnim stażem pracy jest równy zeru.

W świetle powyższej analizy danych bibliograficznych jest oczywiste, że aktywność naukowa kadry naukowo-dydaktycznej w uczelniach akademickich jest bardzo zróżnicowana, a niektóre osoby wykazują aktywność naukową nie gorszą od profesorów jednostek PAN. Lwia część tej kadry, w tym kierownicy katedr, nie wykazuje jednak żadnego zainteresowania badaniami naukowymi.

W środowisku akademickim krążą różnorodne mity o publikowaniu artykułów naukowych w dobrych czasopismach. Niektóre z nich podano niżej:

- początkujący asystent powinien najpierw nabierać praktyki poprzez drukowanie pierwszych prac w krajowych czasopismach, najlepiej w języku ojczystym;
- w naukach ścisłych łatwiej publikować;
- niektóre tematy badawcze nawet w jednej dyscyplinie/specjalności są łatwiejsze;
- w dobrych czasopismach można publikować, jeżeli znasz redaktora;
- jeżeli znasz biegle język angielski, to możesz publikować łatwo w dobrym czasopiśmie;
- trzeba wnieść opłatę za druk w dobrych czasopismach niektórych dyscyplin.
Należy zaznaczyć, że twórcami powyższego rodzaju mitów są „naukowcy", którzy przez całe życie powiększali „dorobek naukowy" poprzez drukowanie twórczości naukowej w tzw. zeszytach na-
ukowych lub pracach naukowych uczelni. W zasadzie są oni opiniodawcami w sprawach naukowych z racji zajmowanych stanowisk, np. kierowników katedr. Jednostki kierowane przez taką naukowo nieaktywną kadrę z upływem czasu osiągają „dno naukowe". Korelacja pomiędzy aktywnością naukową kierowników katedr w naszych uczelniach akademickich a aktywnością naukową adiunktów i asystentów tychże katedr jest uderzająca. Niestety na wybicie z takiego dna jest potrzebny wysiłek jeszcze co najmniej jednego pokolenia, pod warunkiem, że uczelnia dotrwa do tego czasu.

Kondycja nauki Kowalskiego

Prawie cała słabo aktywna naukowo kadra samodzielna zatrudniona w naszych uczelniach akademickich, w tym kierownicy katedr, od lat pracuje na dwóch (i być może na trzech) etatach w państwowych i niepaństwowych szkołach wyższych w okolicy. Dodatkowe zatrudnienie profesorów uczelni akademickich jest wynikiem kilku czynników. Profesorowie ci nie czują się na siłach prowadzić badań naukowych i są świadomi swoich ograniczeń. Tak więc pozostawiają naukę na barkach młodszych kolegów, którzy dopisują w publikacjach nazwiska szefów w ramach swoich powinności. Uczelnie również nie wymagają od nich, aby prowadzili badania naukowe, a koledzy z podwórka zapewniają przedłużenie ich zatrudnienia na wcześniej piastowanym stanowisku oraz funkcję kierownika katedry, niezależnie od dorobku w okresie oceny. Wady kolejnych ustaw o szkolnictwie wyższym na to wszystko pozwalają i szkodzą nauce polskiej.

W celu poprawienia obecnego stanu nauki w naszych uczelniach konieczne są drastyczne zmiany w polityce kadrowej, dotyczące awansów i zatrudniania nauczycieli akademickich oraz w polityce powierzania funkcji kierowniczych. Należy zatrudniać i awansować tych, którzy na to zasługują. Ponadto należy zmienić wszechobecny system antymotywacyjny, dzisiaj funkcjonujący w naszych uczelniach poprzez opracowanie i uruchomienie odpowiedniego mechanizmu motywacyjnego, niezbędnego do poprawiania jakości i wydajności pracy naukowej przeciętnego nauczyciela akademickiego. Jest to jedyna droga do naprawienia kondycji nauki polskiej.

> Prof. dr hab. Keshra Sangwal, fizyk, specjalista w zakresie fizyki krystalizacji i własności mechanicznych ciał krystalicznych i niekrystalicznych, kierownik Katedry Fizyki Stosowanej na Wydziale Podstaw Techniki Politechniki Lubelskiej; współzałożyciel Polskiego Towarzystwa Wzrostu Kryształów w 1991 roku, a w latach 1998-2001 jego prezes.

