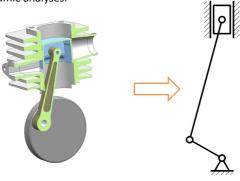


_

Basic terminology and definitions

The **theory of machines and mechanisms** is a chosen area of knowledge in the field of engineering and technical sciences. There are two basic tasks posed to TMM - analysis and synthesis. In **analysis**, the main problems to be solved are:

- structure examination,
- kinematic analysis,
- dynamic analysis.


On the other hand, among the objectives of synthesis, one may distinguish the following:

- searching for the structure of mechanisms for given requirements,
- searching for mechanism properties which satisfy the kinematic or dynamic requirements set for them.

In analysis, the main problems to be solved are:

- structure examination,
- kinematic analysis,
- dynamic analysis.

The examination of the structure of machines and mechanisms is intended to classify them and determine their mobility. The resulting kinematic diagram is employed in both kinematic and dynamic analyses.

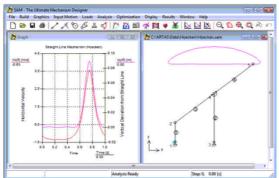
3

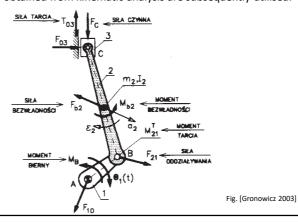
Basic terminology and definitions

In analysis, the main problems to be solved are:

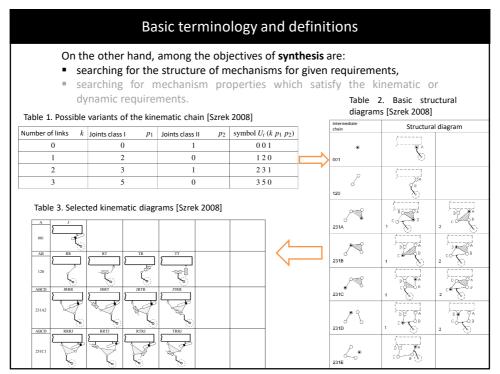
- structure examination,
- kinematic analysis,
- dynamic analysis.

Kinematic analysis seeks to examine motion by determining the displacement, velocity, and acceleration of the components of a mechanism, while disregarding the effects of their mass and any external forces applied.




Fig. SAM program (Synthesis and Analysis of Mechanisms) [https://www.artas.nl/en/]

Δ

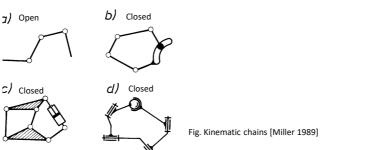

In analysis, the main problems to be solved are:

- structure examination,
- kinematic analysis,
- dynamic analysis.

Dynamic analysis concerns the study of mechanisms with respect to the forces acting upon them. The results obtained from kinematic analysis are subsequently utilised.

5

Basic terminology and definitions On the other hand, among the objectives of synthesis are: searching for the structure of mechanisms for given requirements, searching for mechanism properties which satisfy the kinematic or dynamic requirements. Fig. SAM program [Artas]


Basic terminology and definitions

Mechanism

7

- 1. Selected definitions excludion manipulators as mechanisms:
- Franz Reuleaux (1829-1905) "assemblage of resistant bodies, connected by movable joints, to form a closed kinematic chain with one link fixed and having the purpose of transforming motion" [Uicker 2011].
- Miller S. a closed kinematic chain with one fixed link characterized by the number of driver links equal to its mobility.

A closed kinematic chain is a system of links connected by joints in such a way that each link forms a pair with at least two other links.

Mechanism

- 2. Selected definitions treating manipulators as mechanisms:
- Felis, Jaworowski, Cieślik is a kinematic chain performing a precisely defined motion.

A kinematic chain is a set of links connected in kinematic pairs, with one link fixed.

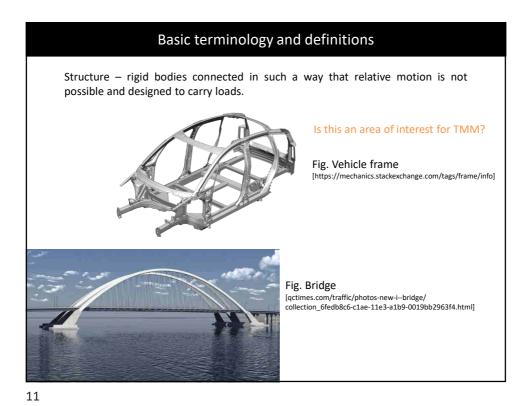
■ Wawrzecki J. — is a set of connected links with precisely defined relative motion, whose function is to transmit motion.

There are also definitions that exclude natural creations as mechanisms.

Spatial mechanism

Every real mechanism is a spatial mechanism. Planar mechanisms are distinguished from this group to facilitate simpler kinematic, and partly structural and dynamic, analysis.

A *planar mechanism* is one in which all points of all members move in planes that are mutually parallel to a stationary plane.


9

Basic terminology and definitions

Machine

- Franz Reuleaux (1829-1905) "combination of resistant bodies so arranged that by their means the mechanical forces of nature can be compelled to do work accompanied by certain determinate motions" [Uicker 2011].
- Felis, Jaworowski, Cieślik a set of mechanisms that perform the desired work related to technological processes or energy transformation.
- Miller S. is a device in which mechanical motion is involved in a power process that results in useful work or energy transformation.

What is the difference between a machine and a mechanism?

Link (member):
an element, or a set of rigidly connected elements, of which a mechanism or machine is composed, that mediates the transmission of motion.

Connecting rod Connecting rod – symbolic representation

A

Part 1

What parts are still missing?

Part 4, 5

Part 2

Fig. [http://www.xtremediesel.com/Carrillo-Cummins-Pro-H-Connecting-Rod-with-H-11-Bolts.aspx]

Types of links (members)

- Classification by the motion performed relative to the adopted reference system:
- movable (e.g. shaft, piston, rod) having motion relative to an assumed reference system,
- fixed (e.g. base, frame, body) having no motion relative to the reference system.

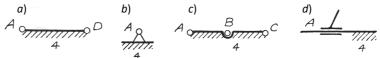
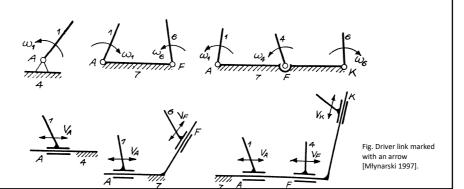
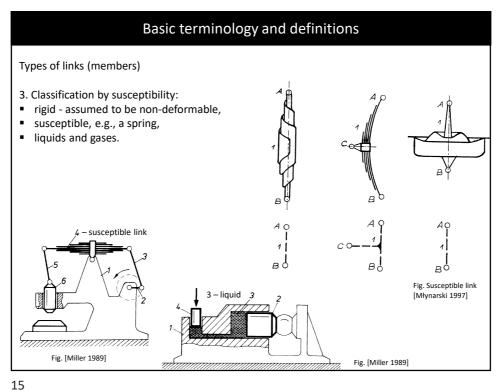
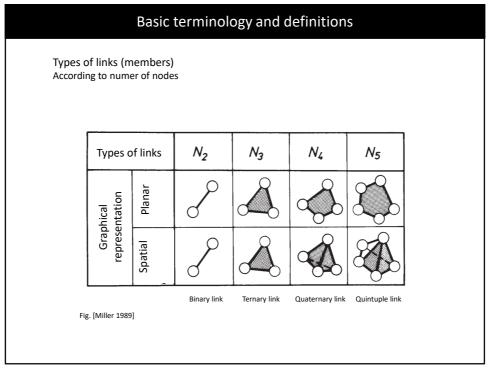


Fig. Fixed link 4 forming the revolute (a, b, c) and sliding (d) pair [Młynarski 1997]


Fig. A fixed link that is part of a spatial revolute pair [Dobrzański 2002]


13


Basic terminology and definitions

Types of links (members)

- 2. Classification by the performed role:
- driver (driving) whose motion is known,
- passive (driven),
- mediating.

Joint (kinematic pair, pair) – a connection between two or more links that allows relative motion between them while imposing certain physical constraints on that motion.

Classification of joints according to:

- 1. Type of relative motion between the elements.
- 2. Type of contact between the elements.
- 3. Type of closure between the elements.
- 4. Number of links joined.
- 5. Number of degrees of freedom in the relative motion.

17

Basic terminology and definitions

Classification of joints according to:

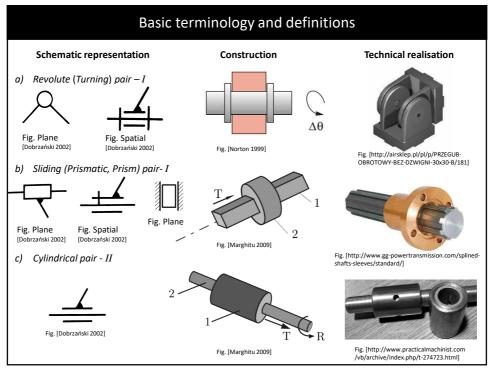
- 1. Type of relative motion between the elements.
- a) Revolute (Turning) pair. When the two elements of a pair are connected in such a way that one can only turn or revolve about a fixed axis of another link. 1 DOF.
- b) Sliding (Prismatic, Prism) pair. When the two elements of a pair are connected in such a way that one can only slide relative to the other, the pair is known as a sliding pair. 1 DOF.
- c) Cylindrical pair. Permits angular rotation and independent translation motion. Thus, a cylindrical pair has two degrees of freedom. 2 DOF.
- d) Screw (helical) pair. When the two elements of a pair are connected in such a way that one element can turn about the other by screw threads, the pair is known as screw pair. The lead screw of a lathe with nut and bolt with a nut are examples of a screw pair. 1 DOF.
- e) Spherical pair. When the two elements of a pair are connected in such a way that one element (with spherical shape) turns or swivels about the other fixed element, the pair formed is called a spherical pair. The ball and socket joint, attachment of a car mirror, pen stand etc., are the examples of a spherical pair. 3 DOF.
- f) Planar pair (flat). It is seldom found in mechanism in its undisguised form, except at a support point. It has three degrees of freedom, that in, two translations and a rotation. 3DOF.

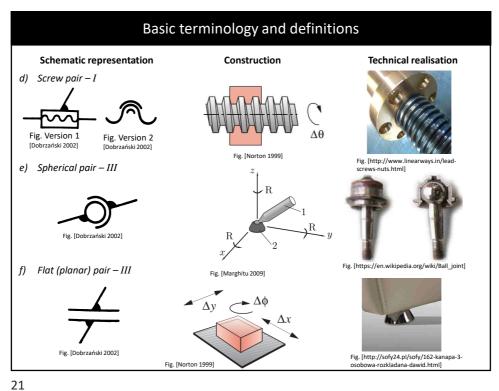
Classification of joints according to the:

1. Type of relative motion between the elements.

Theoretically possible:

g) Spherical pair with pivot. The links are connected in such a way that they can perform rotational movements relative to each other about two axes. 2 DOF.


h) Sphere-cylinder pair. The links are connected in such a way that they can perform rotary motion relative to each other about three axes and rectilinear motion relative to one axis. 4 DOF.


Fig. [Dobrzański 2002]

i) Sphere-plane pair. The legs are connected in such a way that they can perform rotational motion about three axes and translational motion about two axes with respect to each other. 5 DOF.

Fig. [Dobrzański 2002]

19

- 2. The kinematic pairs according to the type of contact between the elements may be classified as discussed below (Reuleaux):
- a) Lower pair. When the two elements of a pair have surface contact during relative motion, and the surface of one element slides over the surface of the other, the pair formed is known as alower pair. Examples of lower pairs (in technical realizations) include: revolute, sliding, screw, cylindrical, sphere and planar.
- b) Higher pair. When the two elements of a pair have (theoretically) a line or point contact during relative motion, and the movement between the two elements involves both turning and sliding, the pair is known as a higher pair. Examples of higher pairs having 2 DOF include: gear (half) joint (gear contact) and cam-follower (half) joint (rolling-sliding contact).

Fig. Gear wheels (

Fig. Number of degrees of freedom, schematic representation and symbolic representation of gear joint [Gronowicz 2003]

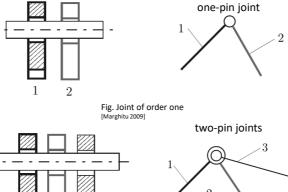
Fig. Cam and follower

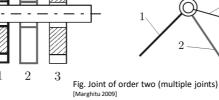
Fig. Theoretical constructions of spherical pair [Miller 1989]

Fig. Number of degrees of freedom and schematic representation of cam and follower [Gronowicz 2003]

- 3. The kinematic pairs according to the type of closure between the elements may be classified as discussed below:
- a) Self closed pair. When the two elements of a pair are connected mechanically in such a way that only the required type of relative motion occurs, the pair is known as a self closed pair.
- b) Force closed pair. When the two elements of a pair are not connected mechanically but are kept in contact by the action of external forces, the pair is known as a force-closed pair. The cam and follower in an example of force closed pair, as it is kept in contact by the force exerted by spring and gravity.

Fig. Cam and follower - forced closed [https://www.cgtrader.com/free-3d-models /industrial/part/cam-follower-mechanism-with-spring]


Fig. Spherical pair – self closed [https://en.wikipedia.org/wiki/Ball_joint]


23

Basic terminology and definitions

4. Classification of joints according to the number of links joined.

The order of a joint is defined as the number of links joined together minuse one. The combination of two links has an order of one and constitutes a single joint.

5. Classification of joints according to the number of degrees of freedom in relative motion.

This is the most common classification of kinematic pairs. The class of a pair is defined as the number* of left degrees of freedom. A revolute and sliding pair is therefore class I, a cylindrical pair class II, a spherical pair class III, etc.

There also exist yoke joint (pin in slot) in mechanisms, which possesses 2 DOF and has not been previously presented.

Fig. Number of degrees of freedom, schematic and symbolic representation of the yoke joint [Gronowicz 2003]

*Another approach to determining the class of kinematic pairs is also used. In this method, the number of removed degrees of freedom determines the class of the pair. For example, a revolute pair is classified as class V.

25

Basic terminology and definitions

Number of degrees of freedom (DOF)

Felis, Jaworowski, Cieślik – The number of degrees of freedom of a rigid body is the number of independent generalized coordinates that determine its position in space relative to a chosen coordinate system.

The motion of a free rigid body in space can be represented as three independent translational motions along the X, Y and Z axes and three independent rotational motions about the X, Y and Z axes.

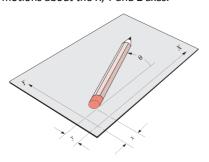


Fig. Rigid body in 2D space (plane) - 3 DOF [Norton 1999]

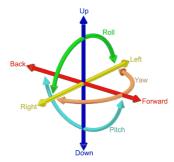


Fig. Rigid body in 3D space - 6 DOF [https://en.wikipedia.org/wiki/Six_degrees_of_freedom]

Fig. [Miller 1989

Number of degrees of freedom (DOF)

Other approaches to understand DOF

- The number of inputs that must be provided to produce a predictable output;
- Number of independent coordinates required to define the position of an element.

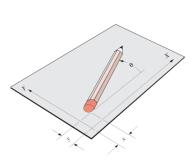


Fig. Rigid body in 2D space (plane) - 3 DOF [Norton 1999]

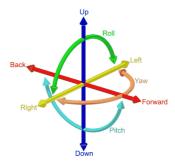


Fig. Rigid body in 3D space - 6 DOF [https://en.wikipedia.org/wiki/Six_degrees_of_freedom]

27

Basic terminology and definitions

Mobility M (degrees of freedom) of a mechanism

The mobility of a mechanism is the number of degrees of freedom that the links have relative to the base (fixed link).

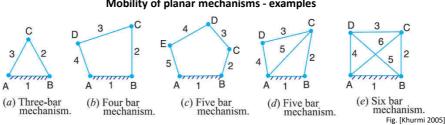
In other words, the mobility of a mechanism can be defined as the number of drives that must be applied for its motion to be determined.

The formula for calculating the mobility of planar mechanisms, known as the Kutzbach criterion, is as follows:

$$M = 3(n-1) - 2 p_1 - p_2$$

M = mobility,

n = number of links including frame,


 p_1 = number of joints of class I (with 1 DOF),

 p_2 = number of joints of class II (with 2 DOF).

and for spatial mechanisms :

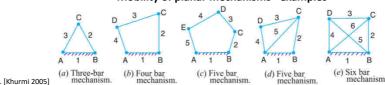
$$M = 6(n-1) - 5 p_1 - 4 p_2 - 3 p_3 - 2 p_4 - p_5$$

Mobility of planar mechanisms - examples

The mobility (M) for some simple mechanisms that do not include higher pairs (i.e. $p_4 = 0$) as shown in figure, is determined as follows:

- The mechanism has three links and three binary joints i.e. n = 3 and $p_5 = 3$ $M = 3(3-1)-2 \times 3 = 0$
- The mechanism has four links and four binary joints i.e. n = 4 and $p_5 = 4$ $M = 3(4-1) - 2 \times 4 = 1$
- The mechanism has five links and five binary joints i.e. n = 5 and $p_5 = 5$ $M = 3(5-1) - 2 \times 5 = 2$
- The mechanism has five links and four binary joints (because there are two joints at B and D, and two ternary joints at A and C) i.e. n = 5 and $p_5 = 6$

$$M = 3(5-1) - 2 \times 6 = 0$$


The mechanism has six links and eight binary joints (because there are four ternary joints at A, B, C and *D*) i.e. n = 6 and $p_5 = 8$

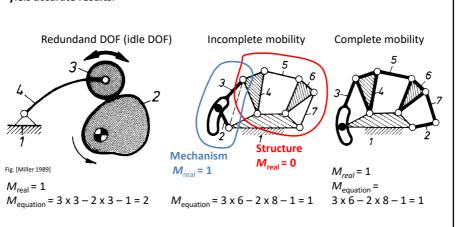
$$M = 3 (6 - 1) - 2 \times 8 = -1$$

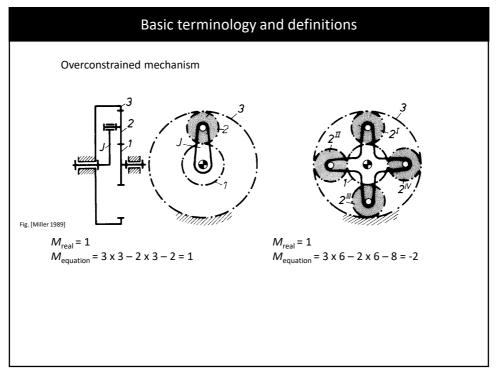
29

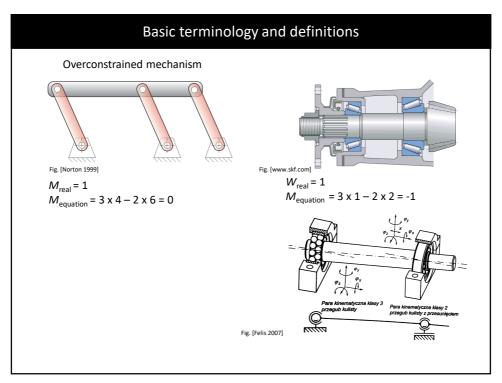
Basic terminology and definitions

Mobility of planar mechanisms - examples

It may be noted that:


- When M = 0, then the mechanism forms a structure and no relative motion between the links is possible Fig. a and d;
- When M = 1, the mechanism can be driven by a single input motion, as shown in Fig. b;
- When M = 2, two separate input motions are required to produce unambiguous motion for the mechanism, as shown in Fig. c;
- When M = -1 or less, there are redundant constrains in the chain and it forms a statically indeterminate structure, as shown in Fig. e.

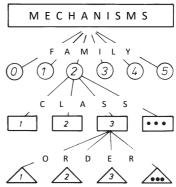

- $M \le 0$ Mechanism with zero, or negative, mobility are termed locked mechanisms. These mechanisms are unable to move and form a structure.
- M>1 A mechanism with multiple mobility requires more than one driver to operate it precisely. In general, this type of mechanism offer greater ability to position a link accurately. There is no requirement that a mechanism have only M=1, although that is often desirable for simplicity of drive control.


31

Basic terminology and definitions

Kutzbach's–Gruebler's formula for mechanism mobility does not take into account the specific geometry (size or shape) of the links, but only the connectivity of the links and the type of joints (connections). The **Grübler equation does not always yiels accurate results.**

Classification of mechanisms


There are three types of mechanism classifications:

- structural,
- constructional,
- functional.

Structural classification, that is, the division according to structural features, was initiated by the Russian scientist Leonid Vladimirovich Assur (1878-1920) and later developed by other researchers. Ivan Ivanovich Artobolevski (1905-1977) further specified the concept of structural group, including class and order [Ceccarelli 2014].

The structural classification adopted in this study divides mechanisms into families, classes, and orders (Fig.). This classification does not allow for the unambiguous assignment of all mechanisms to appropriate categories. More accurate methods of classification have been developed, with a greater degree of complexity, however, the discussion of these methods is beyond the scope of this presentation.

The advantage of structural classification lies in its ability to facilitate the development of universal methods for structural, kinematic, and dynamic analysis.

35

Classification of mechanisms - structural

Family

There are six families numbered from 0 to 5. Membership in a family is determined by the imposed constraints. They are defined relative to the adopted coordinate system jointly for all members. In **family 0**, the links possess a total of six degrees of freedom (Figure 1)

Fig. 1. Family 0-6 DOF in total [Miller 1989]

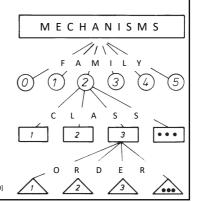
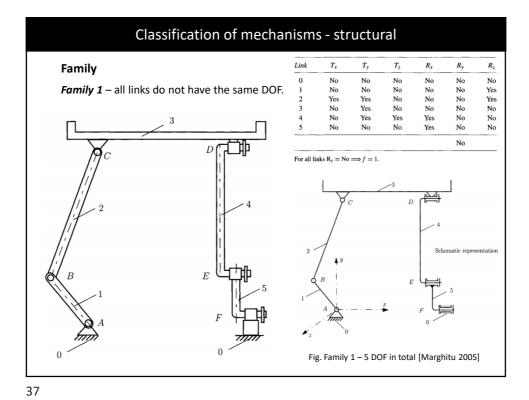



Fig. [Miller 1989]

Family

Family 2 – all links have the same degrees of freedom removed. For the mechanism in Figure 2, these are rotation about the vertical axis and translation about the axis perpendicular to the plane of the figure.

Family 3 — all links have the same three degrees of freedom removed. For the mechanism in Fig. 3, these are rotation about the vertical and horizontal axes and translation along an axis perpendicular to the plane of the figure. This family includes mainly planar mechanisms as well as some spatial mechanisms.

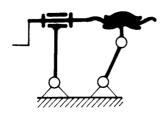


Fig. 2. Family 2 – 4 DOF in total [Miller 1989]

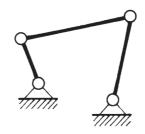


Fig. 3. Family 3 – 3 DOF in total [Miller 1989]

Family

Family 4 — all links retain the same two degrees of freedom. For the wedge mechanism in Fig. 1, these are displacement along the horizontal and vertical axes. This family includes sliding pair mechanisms (wedge mechanisms) and screw mechanisms.

Family 5 – link has 1 DOF (Fig. 2). Driver (or driving) links belong to this family.

Fig. 1. Family 4 – 2 DOF in total [Miller 1989]

Fig. 2. Family 5 – 1 DOF in total [Miller 1989]

39

Classification of mechanisms - structural

Class of mechanism (description refers to planar mechanisms)

The class of mechanism is determined by the class of structural groups (Assur groups) that comprise the mechanism. The following steps should be performed to determine the class of a mechanism:

- Construct a kinematic diagram of the mechanism, ensuring that its mobility corresponds to the actual mobility (remove redundant degrees of freedom and links that overconstrained mechanism).
- 2. If class II joints are present, construct an alternative kinematic diagram in which they are replaced by class I joints.
- 3. Determine the class of the Assur group. The class of the mechanism is equal to the highest class of group present in the mechanism.

For some mechanisms, such as geared or complex mechanisms, it is convenient to create a structural diagram before.

Class of mechanism

A structural (Assur) group is a kinematic chain that jointly fulfilling the following conditions:

- 1. When connected to a base (fixed link) of free links, it forms a structure.
- 2. It is not possible to split it into simpler chains satisfy the first condition.
- Separating a structural group from an existing mechanism does not change its mobility.

It follows from condition (1) that the Assur group has mobility equal to 0 and is described by a structural equation:

$$3n - 2p_1 = 0$$
$$3n = 2p_1$$

From this equation, the number of links and class I joints that an Assur group can have is determined (see Table).

Number of links n	2	4	6	
Number of joints p ₁	3	6	9	

41

Classification of mechanisms - structural

Class of mechanism

The class of Assur group for 2 links and 3 joints is referred to as II class (one internal kinematic pair).

Fig. Example Assur group connected to the base [Miller 1989]

For other groups consisting of a greater numer of links, the class of the group is determined by the number of sides of the largest closed polygon within the group*.

*According to some sources [e.g. Siemieniako 1999, Miller 1989], the class of a group is determined by the number of members and kinematic pairs. The table below presents the class membership of groups according to this rule.

Class of group	II	III	IV	
Number of links n	2	4	6	
Number of joints p_1	3	6	9	

Fig. An example of a class group III
[Miller 1989]

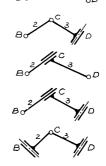


Fig. All variants of a class II group with class I joints [Młynarski 1997]

Class of mechanism

The two rules presented for determining the class of a group, closed polygon rule the rule based on the number of links and joints, are not equivalent (the figures in the table are from [Siemieniako 1991]

Class of	group by	Number	Number of	Group structural diagram	
A closed polygon	Numbers of links and joints	of members	joints		
III	III	4	6	1 2 mg o	
IV	III	4	6		
III	IV	6	9	1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
IV	IV	6	9	3 5	

43

Classification of mechanisms - structural

Class of mechanism

In these classes the closed polygon rule introduced by I. I. Artobolevski [Ceccarelli 2014] will be used. Some authors refer to the drive link as a class I group.

Mechanism order

The order of a mechanism is defined as the number of exterior nodes of a group which, when connected to a base, form a structure.

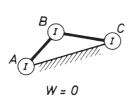


Fig. Group of order 2 [Miller 1989]

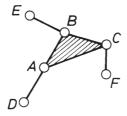
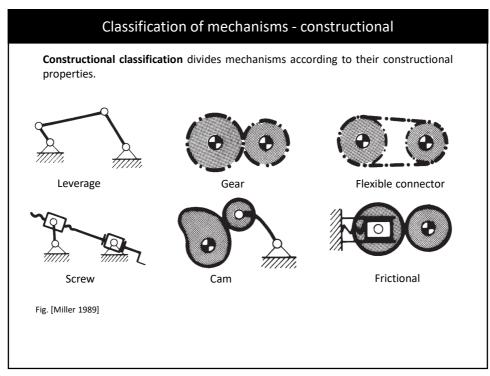
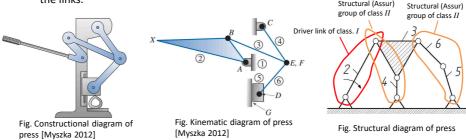



Fig. Group of order 3 [Miller 1989]

Classification of mechanisms - functional


Functional classification divides the mechanisms according to the tasks perform in machines. According to Artobolevski [Mlynarski, 1997], mechanisms are classified as follows: switching on and off, grippers, scales, brakes, stopping, for performing mathematical operations, steering, lever, valves, parallelograms, non-parallelograms, pistons, rotor and eccentric pumps, reels machines, regulators, with swinging discs, presses, power supply, casual power supply, heavy lifting, hammers, locking devices, timing, ratchet and other devices.

Structural analysis of mechanisms

The structural analysis of the mechanism aims to determine its mobility, structural classification and serves as the starting point for further kinematic and dynamic analysis.

During the analysis, two types of diagrams can be made:

- kinematic diagram represents the mechanism in a simplified manner, retaining the construction and characteristic geometric dimensions of the links necessary for kinematic analysis,
- structural diagram represents, in a symbolic form, the connections between the links.

 $M = 3n - 2P_1 - P_2 = 3.5 - 2.7 = 15 - 14 = 1$

The press mechanism has a mobility of 1 and is classified as family 3, class II, order 2.

What modifications are required to reclassify it as a III class mechanism?

47

Structural analysis of mechanisms W = 6n - 5P₁ - 4P₂ - 3P₃ - 2P₄ - P₅ = 6·6 - 5·7 = 36 - 35 = 1 What is the class of the mechanism? Kinematic diagram mechanism with cardan couplings Equivalent kinematic diagram of the mechanism with Cardan couplings Fig. [Felis, Jaworski 2007]

Linkage mechanisms

A *Linkage mechanism** is build exclusively from lower pairs , with the exception of screw pairs.

The simplest mechanism of this group is a rotor shaft e.g. of a fan or electric motor supported in bearings,

the basic mechanism, however, is the four bar linkage. A considerable number of linkage mechanisms can be obtained from it through inversion¹ and transformation ².

Types of links that occur in a four bar linkage:

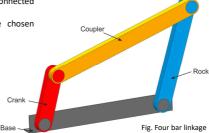
Crank (driver link) - can make a full rotation and is connected to the base.

Rocker (follower, lever) - performs an oscillating-rotating (pendulum) motion and is connected to the base.

Coupler (connecting arm) – undergoes plane motion and is not connected to the base.

Base (frame, fixed link) - remains stationary relative to the chosen reference system.

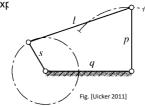
*There is no single definition of linkage mechanism. Presented definition is not universally accepted and narrows scope of mechanism that can be assigned to this group.


Linkage – mechanism having only lower pairs [Uicker 2011]

Linkage – mechanisms consisting of lower pairs only or loosely synonymous to the term mechanism [Ambekar 2007]

Linkage – is a mechanism where rigid parts are connected together to form a chain [Myszka 2012]

¹Inversion (kinematic inversion) – the change of the base from one link to another e.g. crank with base ²Transformation – the change of the type of


²Transformation – the change of the type of joint e.g. from a revolute to a sliding joint.

49

Linkage mechanisms

From a practical point of view, it is important to know the conditions that must be satisfied by the links of the four bar linkage to allow one of them to perform a full rotation. In such case, a motor can drive this link. The answer to this question is given by Grashof's law, which states that for a four-bar linkage, if the sum of the shortest and longest links is not greater than the sum of the remaining two links, at least one of the links will be capable of revolving. Grashof's law (condition) is

 $s+1 \le p+q$

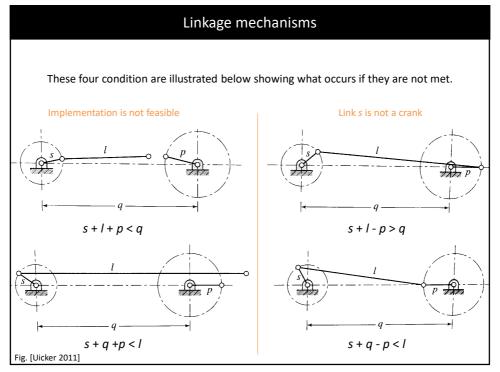
s = length of shortest link

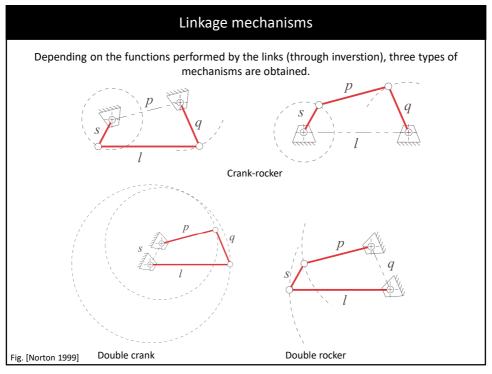
/= length of longest link

p = length of one remaining link

q =length of other remaining link

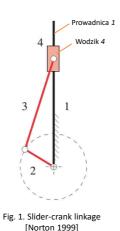
Reuleaux approached the problem somewhat differently but, naturally, obtains the same results. The conditions are as follows:

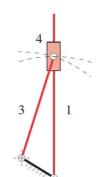

 $s + l + p \ge q$


 $s + l - p \le q$

 $s + q + p \ge I$

s + q - p ≤ l


The result is of course the same.



Linkage mechanisms

By transforming the revioute joint to a sliding joint in the four bar mechanism, a slider-crank mechanism is obtained (Fig. 1). It is commonly used in internal combustion engines and compressors.

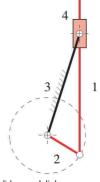
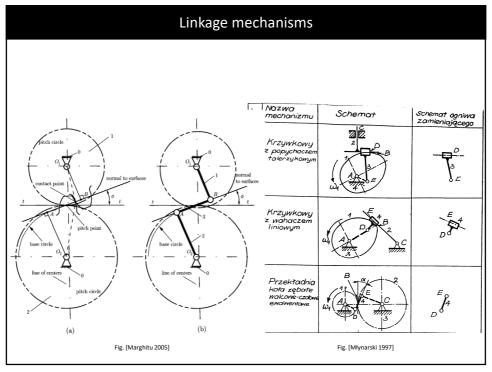
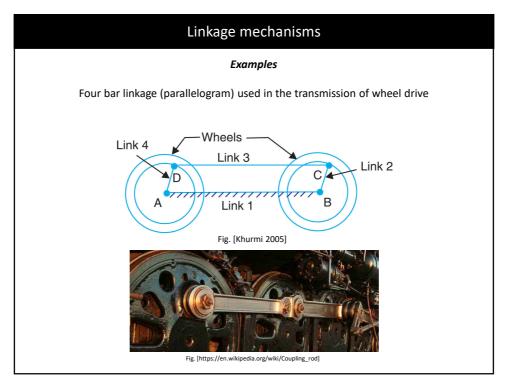
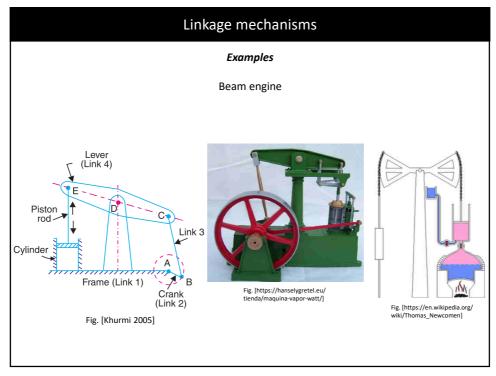
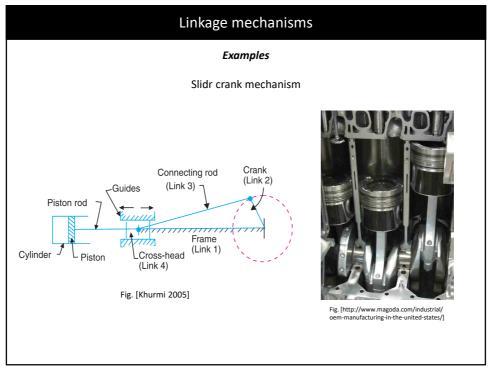


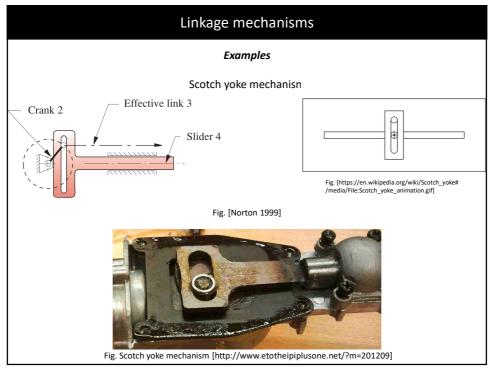
Fig. 2. Inversion of the slider-crank linkage [Norton 1999]

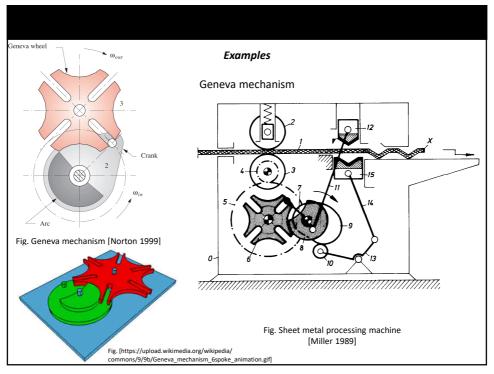

53

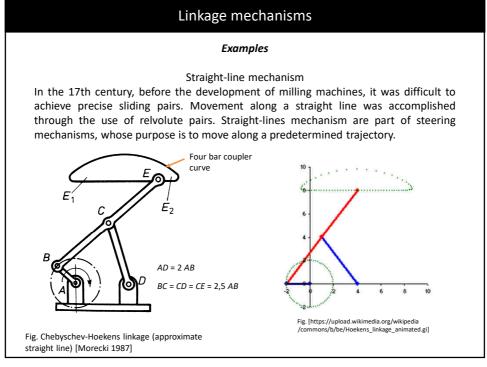

Linkage mechanisms

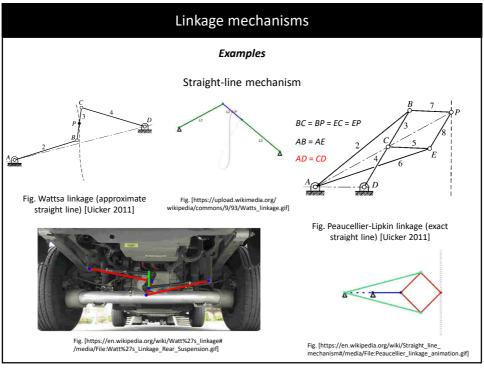

Converting kinematic pairs of class II to class I pairs allows a kinematic analysis to be performed using the methods applied to linkage mechanisms. The resulting equivalent mechanism must be kinematically equivalent to the real mechanism at the given position. An additional link is introduced so that the mobility of the mechanism remains unchanged. In the case of cam mechanisms, the ends of the link are at the centers of the adjoining curves.

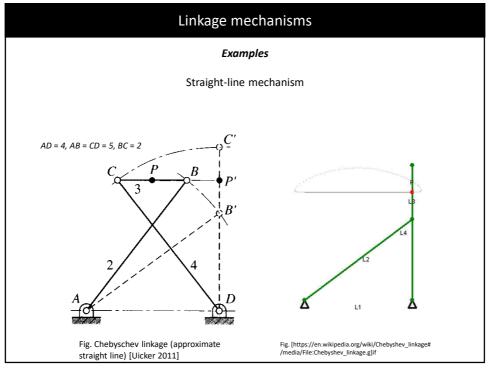

Lp	Nazwa mechanizmu	Schemat	Schemat ogniwa zamieniającego
1	Dwu – krzywkowy	1 B 2 E C TIME.	D 4 ○ E
2	Krzywkowy z popychaczem ostrzowym (na krzywiźnie)	2 E D B 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	£ 64
3	Krzywkowy z popychaczem ostrzowym (na częśći prosło linjowej)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	500
4	Krzywkowy z wahaczem ostrzowym (na krzywiznie)	A C C C C C C C C C C C C C C C C C C C	₽ [€]
5	Krzywkowy z popychaczem kształtowym	A A A A A A A A A A A A A A	4 D

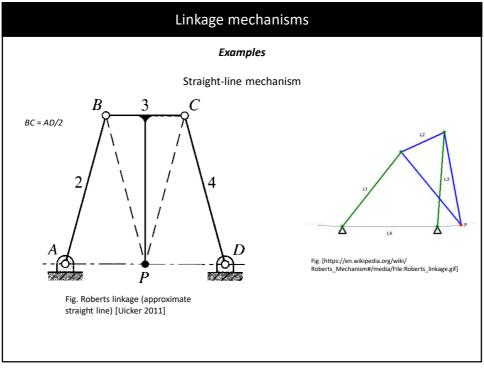

Fig. [Młynarski 1997]

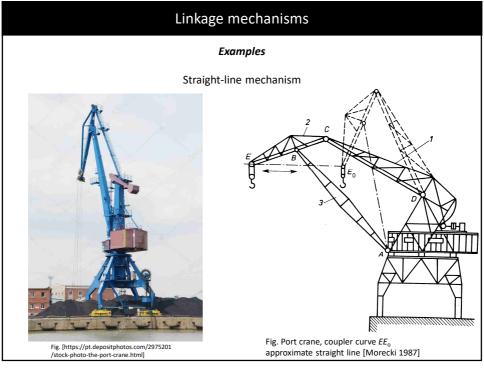


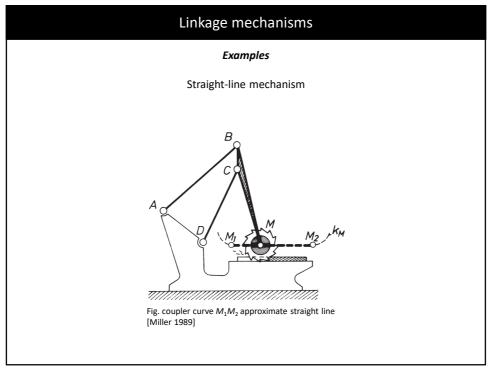


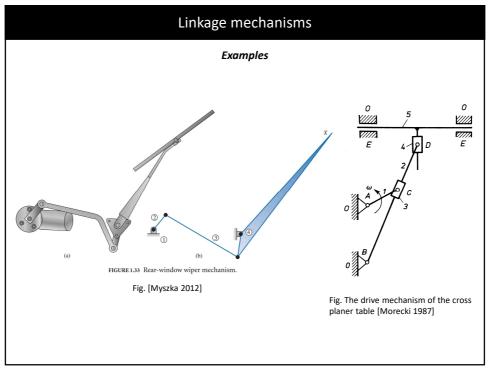












Literature

- 1. Gronowicz A.: Podstawy analizy układów kinematycznych. OWPW, Wrocław 2003.
- Szrek J.: Synteza układu kinematycznego i sterowania czworonożnego robota kołowo-kroczącego. Rozprawa doktorska, Wrocław 2008.
- 3. Miller S.: Teoria maszyn i mechanizmów. Analiza układów kinematycznych. WPW, Wrocław 1989.
- 4. Felis J., Jaworowski H., Cieślik J.: Teoria maszyn i mechanizmów. Część l. Analiza mechanizmów. UWND AGH, Kraków 2008.
- Felis J., Jaworowski H.: Teoria maszyn i mechanizmów. Część II. Przykłady i zadania. UWND AGH, Kraków 2007.
- 6. Wawrzecki J.: Teoria maszyn i mechanizmów. WPŁ, Łódź 1994.
- 7. Uicker J., Pennock G., Shigley J.: Theory of machines and mechanism. OUP, New York 2011.
- 8. Młynarski T., Listwan A., Pazderski E.: Teoria maszyn i mechanizmów. Cz. I. Synteza i analiza strukturalna mechanizmów. ZGPK, Kraków 1997
- 9. Norton R. L.: Design of machinery. An introduction to the synthesis and analysis of mechanisms and machines. Mc Graw-Hill, 1999.
- 10. Marghitu D. B.: Mechanisms and robots analysis with Matlab. Springer, 2009.
- 11. Marghitu D. B.: Kinematic chains and machine components design. Elsevier 2005.
- 12. Dobrzański T.: Rysunek techniczny maszynowy. WNT, Warszawa 2002.
- 13. Khurmi R. S., Gupta J.K.: Theory of machines. S Chand & Co Ltd, 2005.
- 14. Ceccarelli M. (Editor): Distinguished Figures in Mechanism and Machine Science. Their Contributions and Legacies, Part 3. Evgrafov A., Kozlikin D.: Leonid Assur. Springer, Dordrecht 2014.
- 15. Siemieniako F.: Teoria maszyn i mechanizmów z zadaniami. DzWiPPB, Białystok 1999.
- 16. Myszka D. H.: Mechines & mechanism. Applied kinematic analysis. Prentice Hall, Boston 2012.
- 17. Parszewski Z.: Teoria maszyn i mechanizmów. WNT, Warszawa 1978.
- 18. Morecki A., Oderfeld J.: Teoria maszyn i mechanizmów. PWN, Warszawa 1987.
- 19. Ambekar A. G.: Mechanism and Machine Theory. Prentice Hall of India, New Delhi 2007.