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General information

Kinematics is the study of motion without taking into account its causes. The
description of the movement requires two basic units: length in meters and
time in seconds. The remaining units are derivatives. Motion is a relative
concept and its description depends on the adopted reference system.

In the analysis task it is assumed that the movement of the driving member
is known, and the parameters of the movement of the remaining members
of the mechanism relative to the base (frame) are searched. The purpose of
the kinematic analysis may be to determine:

= position of links or paths of points,

= velocity,

= acceleration.




General information

Rigid body motion types:

1. Plane motion:
= translation - rectilinear and curvilinear,
= rotation.

2. Spatial motion:

= rotation about fixed point,
= helical,

= general.

Plane motion of a rigid body occurs when all points
of the body move in planes parallel to some
stationary plane.

By extending this definition to all movable links of a
mechanism, a group is distinguished called plane
mechanisms.

Most of the mechanisms used in practice belong to
this group.

Fig. [Leyko 2012]
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General information

Spatial motion

General motion
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Translational motion

"A link is in translational motion when any section associated with this link
maintains a parallel position in all phases of motion" [Miller 1996].
Therefore, in this motion, the paths of all points of the link are identical, as
are the velocities and accelerations.

In rectilinear motion, the paths are a straight line and in a curvilinear motion,
they are a curve.




Translational motion

v = ds/dt, Velocity [m/s]
dv d(ds d’s )
=—=—|—|=—5 Acceleration [m/s?]
dt  dr\ dt dt
c ’\;’
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Fig. [Miller 1996]

Rotational motion

Rotation occurs when the paths of all points on the body draw circles whose
centers lie on a common straight line known as the axis of rotation. This
means that each point on the body rotates the same angle.

C Ve _da _ .
= 7 = Angular velocity [rad/s]
t
Vpg=Vc=0-F Linear velocity [m/s]
VB = 0.

Fig. [http://energyeducation.ca/encyclopedia/Gear]
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Rotational motion

dw _d(da\_da _ .
E=—=—| —|= = Angular acceleration [rad/s?]

dt dt\ dt ) df
v’ | (radial 1)
— 2 Normal (radial, centripeta
a, = wr= acceleration
r
a, = é&r Tangential acceleration
— 2 2 4 2
a=4a,ta, =rvw +¢&

Plane motion

To remind, plane motion of a rigid body occurs when all points of the body
move in planes parallel to some stationary plane. Translational and rotary
motion are special cases of plane motion.




Plane motion

The paths of the points, velocity and acceleration values are generally
different from each other

I
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Instantaneous centre (onthe Center of the circle Blue point
begining of simulation)

Plane motion — method of analysis

1. Based on the equation of motion and its form after differentiation,
positions, velocities and accelerations are determined.

In order to facilitate the analysis of planar motion it can be treated as:

1. Composed of translational and rotational motion.

2. Rotation about the instantaneous center.

3. The third possibility to calculate the velocity in this motion is to use the
relationship between the velocities of the points of a rigid body (velocity
projection method).




Plane motion as a motion composed of translational and rotational motion

This method makes it possible to determine the velocity of the point of a rigid
body by graphical approach if the following is known:

= velocity of one point (value, direction),

= direction of the searched velocity.

The displacement of a link, in an infinitely short period of time, is treated as
composed of two motions - translational and rotational. In the first step, the
wheel moves at speed v, from point B, to B,, and then rotates in relation to
this point B, until point C,’ reaches position C,. The points on the link can be
chosen freely.

G ve=vy, G

Translational motion . .
Rotational motion

Plane motion as a motion composed of translational and rotational motion

The velocity of a point C is equal to the sum of the velocity of point B in
translational motion and the velocity of point C relative to the point B in
rotational motion: - - -

Ve =vp tVep
The relative velocity is always perpendicular to the straight line passing
through the points under consideration and is equal to:

Vep = Wept

Translational motion

Rotational motion




Plane motion as a motion composed of translational and rotational motion

The same displacement can be considered as translational motion of the rigid
body to change the position of the point from C, to C,, and then rotating
about that point so that point B,’ reaches position B,.

5w 4w

vB vC VBC Translational motion ) .
_ Rotational motion

Vpe = Wy X1

\_}.BC = VCB Relative velocities vg = —vcp of the links's points have

the same magnitude and opposite sens

Plane motion as a motion composed of translational and rotational motion

Having information about the velocity of one point and the direction of the
unknown velocity and the relative speed, we can determine it graphically.

Translational motion Rotational motion

Direction of velocity v, in C point

Direction of relative velocity v,

0 A2C2 O B2C2 of point C relative to the point B

Ve = VBT Ven
UAC,  |BB, UBG,




Plane motion as a motion composed of translational and rotational motion

The acceleration of a point is determined analogously as the sum of the
acceleration in translational motion and the relative acceleration of a point in

rotational motion.
Rotational motion

Translational motion

¢ ac=ag G

~ = - = - ~1
de =dg +dcg =dp +dcp *dcy
The relative acceleration ag consists of normal and tangential acceleration
because the link rotates:
- —_=n =t
Acp =dep T dcg

2
no_ 2 _Vep
Aeg =UWpp T = p

e s —_—
Aeg =Ecg X1

Plane motion as a motion composed of translational and rotational motion

Knowing the acceleration of one point of the rigid body and the relative
normal acceleration, the direction of the tangential acceleration and the
direction of the unknown acceleration, it is possible to graphically determine

the acceleration of the second point. ) ) ) )
Translational motion Rotational motion

C; ac=ag C/ G

- _ = = _ = ~n —t
ac =agtacg = ag *tdcg*t dcp
BB, [B,C, UBCo

04,C,

- _ =n —~t
ac = dc * ac
14,C, 0AC,




Plane motion as a motion composed of translational and rotational motion

If the acceleration of point B is known and the acceleration of point C is
determined, the method is analogous and the following relationships apply:

agp =ac tapc
dcp = ~Apc

The given formulas are correct for any
chosen points

Plane motion as an instantaneous rotational motion

In order to determine the velocity of any point of a rigid body, in practice, it is
required to be known:

= velocity of one point,

= the location of the instantaneous center.

Any plane motion of the link can be represented as an infinitely short rotation about
the instantaneous center. This center has a velocity of zero only at the considered
moment. It’s position is different in next moment.

10



Plane motion as an instantaneous rotational motion

Examples of determining the location of instantaneous centers are presented on
below figures

Fig. [Felis 2007]

Plane motion as an instantaneous rotational motion

If the link makes translation motion, for which the angular velocity is zero, the
instantaneous centre do not exist.

11



Plane motion as an instantaneous rotational motion

In order to determine the acceleration of any point of a rigid body in practice, the
knowledge is required about:
= the acceleration of two points.

Analogously to the instantaneous centre (of rotation) exist instantaneous centre of
acceleration, i.e. point about which acceleration at given moment is equal zero.

It is not a frequently used method because of the required information of the
acceleration of two points. The potential use may be in the case of links with more
than two nodes.

The angle S that forms the acceleration vector with the straight line passing through
the instantaneous center of acceleration S and the beginning of the acceleration
vector is constant and does not depend on the point position. It is always an acute
angle.
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A Fig. [Leyko 2012]

Fig. [Leyko 2012]

Plane motion as an instantaneous rotational motion

Example

Find the acceleration of point C of the rigid body using the method of instantaneous centre of
acceleration. Given: acceleration of points A and B.

The solution uses the relationship ZiB = EiA + aBA to obtain the angle §, determined by the
relative acceleration ag, and the straight line passing through the points A i B. Then,
remembering that the angle ¢ is constant for all Instataneous
point of link, the acceleration of point Cis determined. centre of

acceleration

More details can be find in Leyko 2012 and Mtynarski 1992 (in polish).

12



Plane motion - velocity projection method

This method makes it possible to determine the velocity of the point of a rigid body, if
known:

= velocity of one point,

= direction of the searched velocity.

The relationship between the velocities of the points of a rigid body results from the
constant distance between them.

This method is based on the relationship that projections of velocities of any points of
a rigid body, lying on a common straight line, on this straight line, are equal to each
other.

A

Vax = VBx

Va cos(oc) =vp cos(ﬂ)

Compound motion

There are mechanisms in engineering in which one link moves after another link that is also

in motion. A good example is the movable guide and slider. Direct determination of the

velocity and acceleration of the slider in relation to the base (stationary reference frame) is a

difficult task. Therefore, the movement of the slider can be divided and considered in

relation to the second movable reference frame associated with the guide. The following

terminology is used to describe these motions:

= absolute motion - the motion of the element in relation to the stationary reference
frame,

= relative motion - the motion of the element in relation to the movable reference frame,

= Jifting motion - the motion of a movable reference frame in relation to the stationary
reference frame.

0 o
w (7]
7 72

E E

In the example of the movable guide and the slider, the

absolute motion is the motion of slider respect to the

base, the relative motion is the motion of the slider

respect to the guide, the lifting motion is the motion of o
the guide respect to the base.

Fig. Mechanism of planing machine
[Morecki 1987]




Compound motion

The formulas for calculating velocity and acceleration with the use of compound
motion will be presented on the example of a slider and a moving guide.
The slider (absolute) velocity v, at point C is equal to:

Ve =V tVep

Ve - it is the relative velocity (in relative motion) of point C with respect to B and it is
always tangent to the guide (we imagine that the guide is stationary and slider is
moving).

v — is the velocity of point B, i.e. lifting velocity. Point B
belongs to guide and at considered moment have the same
position as point C that belongs to slider.

The velocity of point B results from motion of the guide and (C
it should be known. The guide may be in translational,
rotational or plane motion.

2

Fig. [Miller 1996]

Compound motion

Acceleration of point Cis equal:

ac =ag*acg

a; — acceleration of point B in relations to the frame (stationary reference frame).

a.; — acceleration of point C (that belongs to slider) relative to point B (that belongs to guide)
- — —h =1 —=C
Acp =dacp Tdcp tdcg

Normal Tangential Coriolis
acceleration acceleration acceleration

Fig. [Miller 1996]
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Compound motion

a”.. Normal acceleration
CB

n _VcB The acceleration direction is consistent with the radius of the
dep = 0 curvature of the guide and is directed towards its center

p —radius of the guide in point under consideration.

If the guide is rectilinear (p = e), normal
acceleration is equal 0
2

1%
~n _— "CB —
acg =—>=0

Fig. [Miller 1996]

Compound motion

P . .
Tangential acceleration
Acp I3

al. = dVCB The direction of the tangential acceleration is tangent
CB dt to the path (guide)

Fig. [Miller 1996]
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Compound motion

c .. .
A g Coriolis acceleration

C —
Appg = 200XV

The direction of the Coriolis acceleration is determined
by the rotation of the relative velocity vector v,
through a right angle in the direction of angular \es
velocity w

The Coriolis acceleration is 0 when the angular velocity
w = 0 (guide is not moving or makes translational
motion) or the relative velocity v, = 0 (the slider is not
moving with respect to the guide).

Counterclockwise
direction

W

Fig. [Miller 1996]

Methods of kinematic analysis of mechanisms

Methods of analysis:
= analytical,

= numerical,

= graphical,

= experimental.

There are also their combinations, such as the combination of analytical and
graphical methods — grapho-analytical methods.

Due to the form of classes and the advantages of simplicity of determination
and help in understanding the essence of kinematic analysis, grapho-
analytical methods will be used.




Analitycal methods

Based on the geometric dependencies, the motion of the mechanism can be
described by mathematical formulas. For this purpose: vector notation,
matrix notation, complex number, trigonometric or algebraic equations are
used. In this way, dependencies describing the positions of the links are
obtained. Then you can get formulas for velocity and acceleration by
differentiating them with respect to time.

Analytical methods are quite difficult and laborious. However, the obtained

results are valuable because:

= enable the analysis of the influence of the geometry of the mechanism on
its kinematics,

= can be used for any mechanism of a certain type,

= asolution is obtained for all possible positions with very high accuracy.

Analytical methods - vector loop equation

It is one of the basic methods used to analyze plane mechanisms with analytical
methods. Based on the kinematic diagram, a vector polygon is created. The
beginnings and ends of vectors are determined by the positions of the kinematic pairs.
Since the vectors form a polygon, the equation is:

Z Z; = ZI+Z.2+Z.3+___+Z =0
i=1

n

where [, are vectors that belong to polygon




Analytical methods - vector loop equation (example)

Four bar mechanism
Two angles 6; and 6, as well as angular velocities and accelerations should be
determined. The lengths of the links and the angles 8, and 6, are known.

The x-axis direction is collinear with the [, base. Angles are measured
counterclockwise from the x-axis (the measuring direction can be either way, it is
important to follow the assumptions throughout the whole calculation process).

Step 1: Draw and label the vectors

Analytical methods - vector loop equation (example)

Step 2: Write the equation zﬂ Z: 0
i=1

Z+E+L+ﬂ=0

n n
And scalar equation: Z I, cosf;, =0 about x axis > 1sin6; =0 and y axis
i=1 i=1
licos @, +1,cos6, +1;c086; +1,c086, =0
l,sin6, +1sin6; +1,sin6, =0

The final result of the solution are two equations [Myszka 2012]:

BD =1} +13 -2L,L, cos(6,) y 0

I2+12 - BD*
y: arccos| —————
241,

6, = 2arctg[ “Lysin, * Ly siny )

L +Ly—L,cos@, —L,cosy

L,sin@, — Lysiny ]

6, =2arctg
L,cos6, +L, - L —Lycosy

18



Analytical methods - vector loop equation (example)

In order to obtain the equation for angular velocity, first order derivative of
angular displacement is done and second order derivative of angular
displacement to get acceleration [Myszka 2012]:

_ {Lz sin(6, —Hz)} _&h Si“(gz _94)+ WL, C05(92 _94)_ WLy + Ly C05(5’4 _93)
W= @ = &

Lysiny Ly sin (94 - 93)

w,= %{Lz sin(6, _92)} £, = &L, sin(6, = 6;)+ a5 L, cos(6, —6,) - af Ly cos(6, —6;) + i Ly
Lysiny

L, sin(é’4 - 93)

The full derivation of the formulas for
displacement, velocity and acceleration
can be found in Mtynarski 1992.

Numerical methods

Numerical methods have two main applications in the analysis of mechanisms:
1. Performing calculations in dedicated programs only on the basis of defining the
mechanism and boundary conditions.

A significant group of dedicated programs uses the numerical method of multiboby simulation
(MBS). It is possible to model planar (2D and 3D) and spatial mechanisms with rigid and
deformable members, taking into account friction and contacts, damping, elasticity, external
forces and moments.

2. Obtaining results from equations for the full range of motion and various
parameters of the mechanism. Also solving equations for that exact solution is not
known and only this method is suitable.

Programming languages, spreadsheets and computing programs with a high-level programming
language are used. It is possible to obtain results directly from algebraic equations without
substituting specific data, through symbolic calculations (e.g. Mathematica, Matlab).




Numerical methods — example in NX

1. Performing calculations in dedicated programs only on the basis of defining the
mechanism and boundary conditions.

Determine the angular displacement, velocity and

acceleration for the rocker in four bar mechanism: Motion Navigator
Name
o B ] fm o
L1 = 0.5; % Frame length [m] Four_bar_mechanism
L2 = 0.2; % Crank length [m] |j
L3 = 0.6; % Coupler length [m] —- |-/= motion_1
L4 = 0.4; % Rocker length[m] N
w = 2II % Angular velocity[rad/s] 1 p Links
g =0 % angular acceleration[rad/s?] nE - o
CAD model + I< Markers
+ , Measure

-
— g7 Selution 1

|

g Results
a

-+ "Wm Animation
]

Mechanism definition o
Y-Graphing

F2
‘;j;—?{ Load Transfer

IAOGI-‘R”.
IAOOI-)E.”
IA001—~FI”.

Numerical methods — example in NX

1. Performing calculations in dedicated programs only on the basis of defining the mechanism
and boundary conditions.
Results for rocker
Tiwel Dis; 1 -~
fap| 21300 - Y640
o | o ]
o | o b
s |9 € a0
11 s 110.0: S
3
5 - o
5 | @ 20
€ £ N
b 2
&l 2 5 oo40
o [ o
%8 i
= e ]
on a7z >
-1.60
o | o o
3|3 3
ER =
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Tq}- < < ;
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g
3
<
e
s
23500
s
8
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Numerical methods — Matlab example

2. Obtaining results from equations for the full range of motion and various

parameters of the mechanism.

Determine the angular displacement,
velocity and acceleration for the
rocker in four bar mechanism :

3 C

3

[Myszka 2012]:

L,sin@, — Lysiny

6, =2arctg
L,cos6, +L,— L —Lycosy

m Equations in Matlab
Lysiny

_&h Si“(’gz _’91)+ L CDS(HZ - ‘93)_“)sz3 C°5(94 _’91)+ WL
Lysin(6, -6,)

e, =

2% Calculating positien, velocity and acceleration of rocker in

our bar mechanism
L1 = 0.5;
L2 = 0.2;
L3 = 0.6;
L4 = 0.4; 3
theta2 = (0:1:360)'; 2nd cran

%% Calculating rocker position in four bar mechanism

evolut

ler and revo

o

t crank/

BD = sqrt(LL"2+L2"2-2%L1*L2%cosd (theta2));

% ang ler and rocker

gamma acosd ((L3"2+L4"2-BD."2) / (2¥L3*L4)) ;

% rocker position

numerator_theta4 = L2*sind(theta2)-L3*sind(gamma);

denominator_theta4 = L2%cosd(theta2) +L4-L1-L3%cosd(gamma) ;
theta4 = 2*atand (numerator_theta4./dencminator_theta4);
£igure (1)

plot (theta4)

title('rocker position in degrees')
$% Calculating rocker velocity in four bar mechanism

omega? = 2%pi; % initial v of crank [rad/s]

tion

i

ler p
numerator_theta3 = -L2%sind (theta2)+L4*sind (gamma);

denominator_theta3 = L1+L3-L2%*cosd(theta2)-Lé*cosd(gamma) ;

Numerical methods — Matlab example

2. Obtaining results from equations for the full range of motion and various parameters of the

mechanism.
Y rocker position in degrees
;7233
120 Y: 1287
\.
110
100 /
<0 /
/
80 / \
/ [Myszka 2012] \
70 i
soh / 0, = 2arcrg L,sin8, —Lysiny ]
S Lycos@, +L,— L —Lycos y
50
0 50 100 150 200 250 300 350
rocker velocity in rad/s
6 ' ' ' ' — m
|X: 340
|Y:8.022
an [Myszka 2012] /
\ _ L,sin(6,-6,) /
ok w,= ———=t /
\ Lysiny
\
of \ /
-2 -
0 50 100 150 200 250 300 350

NX

Digplacement

130.0

3

Angulor Displocement (degrees)
8
°

50.0

Velocity:A001

Angular Velocity (radians/sec)

©
=3
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Numerical methods — Matlab example

2. Obtaining results from equations for the full range of motion and various parameters of the
mechanism.

[Myszka 2012]
__&b sin(6 =6 )+ @A Ly cos(f, ~63) = ar Ly cos (g ~6:) + ax Ly

€4

Ly Si“(94 ’93) NX
rocker acceleration in rad/s® — Acceleralion:A001

«
‘u
o
20 a {
— X; 278 s
Y: 18.58 &
0 \ 4
c
2
=20 %
\ ©
=
40 3
<
3
B0+ F

ou
<

0 50 100 150 200 250 300 350 o

Numerical methods — Matlab example

2. Obtaining results from equations for the full range of motion and various parameters of the
mechanism.
Felis rocker accaleration in rad/s” .
20 C . [Felis 2008]
@ X: 274 2 X 2 2
¥ 1633 o7 l1C0S(p;—@,) + €111 SiN(Q1— ) + w515 + w513 c0S(p3-0,)
20} €3 =— ;
Aby oznaczenia byly zgodne z rysunkiem /3 sm(<p3 - [/JZ)
40 | £ =656, =£363= £, W, = W,itd.
50 | \ @, = 6,itd. NX
— ration A0O1
80t N35.00
Y
-100 | ﬁ
-120 \ g
-140 | 3
-160 L : : <
0 50 100 150 200 250 300 350 ?
; Miller rocker acceleration in rad/s? °
20 - L
X 221 2
1877 .4
0 : §
5
20 =
o
g
- T o
-60 B
’ [Miller 1996]
-80 2 2
e = @, L cos(@y —@3)+ w3 l3cos(, —@3)
4 = N 5
-100 s -
“U 50 100 150 200 250 300 350 l4 Sln((p4 (p3)




Numerical methods — Matlab example

2. Obtaining results from equations for the full range of motion and various parameters of the
mechanism.
5 [ 1,1y sin(a; —a,)cos(a, —a,)[1, sin(ay —a,) — 1, sin(a, —a,)]
& = 0] T Bsn’
5 13 sin® (a3 — ay) [Mtynarski 1992]

_ Uisin(a, — ay)cos(a; — a;) [lysin(e, — a;) — lysin(a, —a,)] +
1,13 sin3(ay — ay)
1, sin(at; — a,) . Variables must be substitute to be consistent with drawing
m 1 676676017650, 654,76,

Miynarski rocker acceleration in rad/s?
40 NX
. .m
|x:313
{v:20.23

”
G

20 1

o

20 1

-35.00
40

Angular Acceleration (rodions/sec"2)
s

60t /

-80 .
0 50 100 150 200 250 300 350

Grapho-analytical method

Method of determining velocity and accelerations by grapho-analytical method will
be discussed. In order to determine the kinematic parameters, a kinematic diagram
as well as velocity and acceleration diagrams should be drawn. It requires the
adoption of appropriate drawing scale.

The drawing scale is defined as the ratio of the value of the physical quantity to the

value of the drawing quantity:
l

K1=6

[%] lenght scale,

v [m/s] . .
K, = — |——| linear velocity scale
v () [mm Y ’

a [m/s*] .. .
.= linear acceleration scale.
(a) Lmm
Example
1. Given: velocity v = 500 m/s, scale k,, = 10 [Z—:i . Find the length of the velocity vector in the drawing.
v m m/s|] 500m/s
W) =—|—/—=| =L =50mm
Ky|s '  mm m/s
10—~
mm
2. Given: length of velocity (v) = 50 mm, scale k,, = 10 [z—ﬁ . Find the value of velocity.
m

m/s r3
v = W)k, [mm—— =50mm - 10—=— =500 m/s
mm mm




Grapho-analytical method

Velocity and acceleration diagrams will be discussed for:

1. Single three node link.

2. Assur group of Il class.

2.1. Assur group of Il class with revolute pair.

2.2. Assur group of Il class with a sliding pair.

3. Assur group of Il class with four links and revolute pairs.

4. An example of determining the velocity and acceleration for four bar mechanism.

Grapho-analytical method

1. Velocity and acceleration diagrams for three node link

Ve = \73 +\7CB,

Vpy = \73 +‘7MB’

= \7C +‘7MC

11, — Velocity origin - start
point for absolute velocity
vectors

S —instantaneous centre M
Fig. [Miller 1996]




Grapho-analytical method

1. Velocity and acceleration diagrams for three node link

ABCM ~ Abcm

The triangle A BCM is similar to the triangle Abcm and rotated by an angle of 90 ° according to
the angular velocity w (it is counterclockwise in the figure). This property can be used to check
the correctness of the velocity diagram or to determine a third velocity.

Rotate 90° in
the same
direction as w

Fig. [Miller 1996]

Grapho-analytical method

1. Velocity and acceleration diagrams for three node link

11, - Acceleration origin -
start point for absolute

acceleration vectors

P P — Instantaneous centre of acceleraton Fig. [Miller 1996]




Grapho-analytical method

1. Velocity and acceleration diagrams for three node link

ABCM ~ Abcm
The triangle ABCM is similar to the triangle Abcm and rotated through the angle 180° —
arctg% according to the angular acceleration € (in the figure it is counterclockwise). This

property can be used to check the correctness of the acceleration diagram or to determine
the acceleration of third point.

Rys. [Miller 1996]

Grapho-analytical method

2.1. Veolcity and acceleration diagrams for Assur group of Il class with revolute pair

The velocities and accelerations of points A and C are known. Determine the velocity and
acceleration of point B using the grapho-analytical method.

In order to determine the velocity of point B, the Vg = YA + VA
system of vector equations is solved graphically: ~  0AB
Vg =Vc tVpe

= oBC

One underline indicates the direction is
known, two underlines: values and
direction

26



Grapho-analytical method

2.1. Veolcity and acceleration diagrams for Assur group of Il class with revolute pair

In order to determine the acceleration of point B, the system of vector equations is graphically
and analytically solved:

- = P ~n =t .
ap =a, tagy =a, tap,tag, The value of the relative normal
|lap  DAB  acceleration is analytically determined:

S s e = en =t
ag =dc tape =dc +dpctdpe w VIZ;A
|BC OBC aBA —_‘AB‘

2
b = VBC
BC — ‘BC‘

[IAB

Grapho-analytical method

2.2. Veolcity and acceleration diagrams for Assur group of Il class with sliding pair

The velocities and accelerations of points A and C are known. Determine the velocities and
accelerations of points B, and B, using the grapho-analytical method (Fig. 1).

In this case, there is too little infromation to directly determine the velocity of points B; and
B,. It is required to know the velocity of two points for one element. For this purpose, two
additional points are determined: C, belonging to the link 1 and A, belonging to the link 2 (it
can be imagined as welding plates to the elements on which the introduced points are located
- Fig. 2). The position of these points coincides in the considered position with points A1 and
C2. Taking such a position of points simplifies the determination of the directions of relative
velocities and the drawing of velocity diagram.




Grapho-analytical method

2.2. Veolcity and acceleration diagrams for Assur
group of Il class with sliding pair

Now it is necessary to determine the velocities of the assumed points, for
which systems of vector equations can be written, for the point A,:

Va2 TVea tVarco Ver =Var tVcian
-~ - PAC and for the point C;: |{ - _DAC
Va2 Va1 TVaoal Vel =Ver tVeica
IBC ~  |BC
B . 7
2 Equatlon assumpt\on:monon
is composed of translational
B and rotational motion

Equation assumption:
compound motion

Grapho-analytical method

2.2. Veolcity and acceleration diagrams for Assur group of Il class with sliding pair

Knowing the velocities of two different points for each of the link, the determination of the
velocity of the points B; and B, may have the following course:

I.  Treating the plane motion of links as composed of translational and rotational motion, one
can write systems of vector equations and solve them graphically:

Vg1 = Va1 Y Vpial Vg2 = Va2 tVpaar
T DAB ~ ~ 0AB

V1 =Ve1 Vil Vg2 =Vea ¥ Vpaci
0BC OBC

Il.  Determine the instantaneous centres and directions of the unknown velocities, and then:

a) Calculate angular velocity (e.g. w = v,/|0;A|) and unknown velocitiec vg; = w -|0,B|
i vg, = w +|0,B]|. The angular velocity w is the same for both links and it results from the
construction of the structural group (rigid connection in the link 1 of the rectilinear part with

the slider).
b) Using the velocity projection method, graphically determine or calculate the velocities of
points from the relationship: _Va cos( Al) _Ver cos( C2)

v ;
coslag coslag,
Ill. Determine the velocity vectors using the graphical method from the similarity of figures (in

this case triangles).

Methods | and Ill will be presented




Grapho-analytical method

2.2. Veolcity and acceleration diagrams

for Assur group of Il class with sliding pair

Now it is necessary to determine the velocity of the '

points B; and B, for which systems of vector equations
can be written:

VBl = Va1 T Vial
0AB

VBic1
0OBC

1t

S |

VB1

B

Vpa Va2 T Voao
0AB

VB2

. c
Grapho-analytical method f '
"’ ]
e !
. N S
2.2. Veolcity and acceleration diagrams 7‘
for Assur group of Il class with sliding pair S %

Velocities of the B; and B, points determined from the
similarity of triangles:

AAB,C, ~ Aa,bc,

AA,B,C, ~ Aa,b,c,

RRRRDTTIN

C
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Grapho-analytical method

2.2. Veolcity and acceleration diagrams for Assur group of Il class with sliding pair

The procedure of determining accelerations is very similar to determining the velocities. The
accelerations for two additional points C, and A, should also be determined from the equation systems:

— - —~n ~1 - = —~n ~1
Ao =Acy Yoy T apcr Acy =ay i Tacia

lac uac lAC DAC
“oBc  lBC = Toac lsC
Apacr = viAZ—CCZ acia = %
Apoar = 200V 404 acicr = 20veicn
dprp1 =0 > p=o gy =0 - p=o0

Grapho-analytical method

2.2. Veolcity and acceleration diagrams for Assur group of Il class with sliding pair

I1BS 1BC

dey =g *+agia +acia Ay =dcy +jner +Hanes at
= H.AC 0AC T ”Aic OAC ac a5, A2A1
de1 =dey +daica *cicy || a2 = A+ Bom * G a0 o thesas
0OBC IBC 0BC IBC Vions a,

aAZ

n
o a1
t
Aciar
c, acy
O
c
acfcz acicz
o
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Grapho-analytical method

2.2. Veolcity and acceleration diagrams for Assur group of Il class with sliding pair

Knowing the accelerations of two different points for each of the link, the determination of the
accelerations of the points B; and B, may have the following course:

I.  Treating the plane motion of links as composed of translational and rotational motion, one

can write systems of vector equations and solve them graphically:

- = —~n ~1 et —_ = —~n —~1
apy =da tdpia T dpial apy =dup tdprar Tdpran
|AB OAB lAB OAB
- - -n -1 - - -n -1
ap) =dcy tapic T apici apy =dcy Tdpycy T dpaco
IBC OBC IBC OBC

Determine the instantaneous centres of acceleration and then unknown accelerations. The
angular acceleration € is identical for both members and it results from the construction of

the structural group (a rigid connection in the member 1 of the rectilinear part with the
slider).

IIl. Determine the acceleration vectors using the graphical method from the similarity of figures
(in this case triangles).

Method | will be presented

Grapho-analytical method

2.2. Veolcity and acceleration diagrams for Assur group of Il class with sliding pair

|IBC

1BC
P —n —1 - _ = —n ~1
apy = dy Tapia Y apia Apy =dyo T apysy Tdpran .
AB UAB lAB OAB A2A1
- _ = ~n ~f - _ = ~n ~1
ap) =dcy tagic) T apic Gpy =dcy Tdpocy T dpacy
IBC OBC IBC OBC

n
o Acint
a t
C1A1 agn,
c, ac, -~
Lol
a.! o5t
cic2 'a
(B1A1 S8g,
n c X
g\ Qcice o
y b1
Q t
Q asvm
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Grapho-analytical method

3. Veolcity and acceleration diagrams for Assur group of i class

The velocities and accelerations of points D, E and F of the class Ill Assur group shown in
Figure 1 are known. The velocities and accelerations of points A, B and C shall be determined.

For this purpose, the so-called Assur’s points R, S or T lying at the intersection of two straight
lines passing through pairs of two-node links (Fig. 2) are introduced. They are rigidly
connected to the three-node ABC link. One Assur’s point is enough to find unknown velocities
and accelerations.

Fig. 1. Class Ill Assur group Fig. 2. Assur’s points: R, 5i T E
[based on Miller 1996] [based on Miller 1958}

Grapho-analytical method

3. Veolcity and acceleration diagrams for Assur group of Ill class

The velocity of point R will be determined first, which will allow in the next step to calculate
the velocity of point A, B or C. Treating the motion of the ABCR link as comopsed of
translational and rotarional motion, the system of equations is obtained:
Vg =Vt VR4
OAR
Vg =Vp +Vpgp
OBR
There are too many unknowns to get a solution. Points A and B also belong to the links AD and
BE for which the velocities of points D and E are known, so there are relationships:
VA =Vp *Vapi Vg =Vp Ve
0OAD OBE
Substituting the equations into the system of
equations we get:

VR =Vp tVapt Vg

T TAD DaAr
VR = Vg T VpptVep
OBE OBR

\}
Fig. [Based on Miller 1996]
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Grapho-analytical method

3. Veolcity and acceleration diagrams for Assur group of i class

The reduction of the directions of The velocity of any point of the three-node
relative velocities to two is due to the link can be determined, for point C the
non-accidental selection of the R point, system of equations has the form

and it is already possible to solve the

system of equations:
Ve =Vp ¥VaptVes =Vp +Vep
= Dap DAk — TDap
Ve Vet Vgt Vip =V H Vi
= TOBE UBR — OBE

Fig. [Based on Miller 1996]

Grapho-analytical method

3. Veolcity and acceleration diagrams for Assur group of Ill class

Determining the accelerations also begins with determining the acceleration of the R point,
the system of equations has the form:

- - o o Where: ) R R )
ap =a, tap, tag, —n Vap . =n _VRo. =n _VBE. =n _ VRB
= TR AAD =T ARA 7,10 9BE = > ARp =100
AR |AD |RA |BE |RB|
~ = —~n ~1 . . .
ap =aptapg tapp The acceleration of any point of the three-node link can
|BR  OBR already be determined, for point C the system of
. equations has the form: f
since
- = —~n ~1
- _ = —n —~t a- =ap ta +a
ap=aptasp tasp CTUR TR —Dgi
= Jap Dap lcr
~ ~ —~n ~1
~ = —~n ~1 a-=ayp tacp ta
ag =ag tagg tdgg S & i #
= T DBE ek HCF
so
A ~n ) —~n =1
g =ap tayp tayptaps tapy

|AD 0AD AR DAR

- _ —-n et —-n =t
ag =ag tagp tagptagg +dpg

|IBE OBE |BR OBR
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Grapho-analytical method

3. Veolcity and acceleration diagrams for Assur group of Il class

- _ = —~n ~ ~n ~ 1
ag=dp+ayp tasptapy Tapy
lAD 0OAD AR OAR
~ _ = L on =t o =n =t
ag =ag tapg tapptdgp +dagp
|BE OBE IBR OBR

dp
t
Arp od
Fig. [Based on Miller 1996] ﬁ} Cl,;)

Grapho-analytical method

4. An example of determining the velocity and acceleration for four bar mechanism

Determine the velocity and acceleration for rocker of four bar mechanism. Given: c
Ll = 0.5; * Frame length [m]

L2 = 0.2; 3 Crank length [m]

L3 = 0.6; % Coupler length [m]

L4 = 0.4; ¥ Rocker length[m]

w, = 211 % Angular velocity[rad/s]

g, =0 % angular a eration[rad/s?]

a = 120 ¥ angular position of crank[®

Velocity of point B = B, = B, is equal:
Vg =yl =2110,2=0,4711 m/s
The velocity scale must be determined for drawing velocity diagram.
K, =0,01 {EL}

S mm

Length of velocity vector v,

(vB)zv—BzﬂzzLoﬂmm

v >
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Grapho-analytical method

4. An example of determining the velocity and acceleration for four bar mechanism

The velocity of point C is given by the equation:
Ve = Vg ticp 1],
0CD g OBC

c
The length of vectors v. and v were read from 1CD
velocity diagram and velocities were calculated:

ve =(ve &, =137,2902018[0,01 =1,372902018 %

vep = (vep JK, =55,292246 0,01 = 0,55292246 =
S

b 1BC
The angular velocity is:
w, = 2o = TN _ 5 435555045 4
lco| 04 s

Grapho-analytical method

4. An example of determining the velocity and acceleration for four bar mechanism

The acceleration of point Cis:
ac =ag*dcg
and after substituting the component accelerations:
g =t = -n =t
dg+ g =g+ gyt acs
lco BCD |aB |BC [BC

. . . m 1
The known normal accelerations should be calculated, the acceleration scale is assumed «, =0,05 [—2—}

2 2 S
ab = Y€ S LITO00I8” _ o) 4087757
lco| 04 s2

(a,, ): al _ 471214987757
. 0,05

_v2 _(04n)

AB 02

=94,24299755142 mm

=7.89568352087 3.
S

(ap)= %2 = T8968352087 _ | o5 61367041742 mm

K, 0,05
)Z 2

ay = V08 2 OS522286” _ Ggs3g7446r ™
|BC| 0.6 s2

( . )_ aly _ 050953874462
)= Yep - 0.50953874462
K, 0,05

=10,19077489241 mm
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Grapho-analytical method

4. An example of determining the velocity and acceleration for four bar mechanism

-n =t = -n -t
dc dc =dp*acgtacy

lco BCD |aB ||Bc HBC

The lengths of the vectors a. and a% were measured from
the diagram and the linear accelerations were calculated

¢ =lac)x, =101,9405928 0,05 = 5,09702964 532

al = (a'c )« =38,8605438 0,05 =1,94302719 ?2

and angular acceleration

t
_ e _1L9A302T9 oo @
S

“%cp] T o4

Grapho-analytical method

4. An example of determining the velocity and acceleration for four bar mechanism

Comparison of results for the analytical, numerical and grapho-analytical methods

Results for the grapho-analytical method (velocity and
acceleration diagrams were made in the SolidEdge program) :

w, = 3,432255045 rad/s
£, 4,857567975 rad/s?

Results for analytical formulas (calculations carried out
in Matlab):

3.244092667733456 rad/s
4.444153407551584 rad/s?

Wy
€4

Results for the numerical method (mechanism simulation and
results from the NX program) :

0, = 3,24409259368118 rad/s
&, 4,44415324003924 rad/s?
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