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Kinematics is the study of motion without taking into account its causes. The

description of the movement requires two basic units: length in meters and

time in seconds. The remaining units are derivatives. Motion is a relative

concept and its description depends on the adopted reference system.

In the analysis task it is assumed that the movement of the driving member

is known, and the parameters of the movement of the remaining members

of the mechanism relative to the base (frame) are searched. The purpose of

the kinematic analysis may be to determine:

 position of links or paths of points,

 velocity,

 acceleration.

General information
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Rigid body motion types:

1. Plane motion:

 translation - rectilinear and curvilinear,

 rotation.

2. Spatial motion:

 rotation about fixed point,

 helical,

 general.

Fig. [Leyko 2012]

Plane motion of a rigid body occurs when all points

of the body move in planes parallel to some

stationary plane.

By extending this definition to all movable links of a

mechanism, a group is distinguished called plane

mechanisms.

Most of the mechanisms used in practice belong to

this group.

General information

Fig. [Meriam 2012]

2. Rotational

motion

1. Translational

motion

Plane motion

General information
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Rotation about fixed point

Spatial motion

Helical motion

Fig. [http://biomechanical.asmedigitalcollection.

asme.org/article.aspx?articleid=1841517]

Fig. [http://kmoddl.library.

cornell.edu/model.php?m=1]

Fig. [http://www.real-world-physics-

problems.com/kinetic-energy.html]

Fig. [http://www.4wdmechanix.com/Video-Youth-

Wins-Ride-in-4WD-Desert-Race-Car%21?r=1]

General information

General motion

Translational motion

"A link is in translational motion when any section associated with this link

maintains a parallel position in all phases of motion" [Miller 1996].

Therefore, in this motion, the paths of all points of the link are identical, as

are the velocities and accelerations.

In rectilinear motion, the paths are a straight line and in a curvilinear motion,

they are a curve.
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vB = vC = vi, ω = 0,

aB = aC = ai, ε = 0,

v = ds/dt,
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Fig. [Miller 1996]

Translational motion

Rotational motion
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Rotation occurs when the paths of all points on the body draw circles whose

centers lie on a common straight line known as the axis of rotation. This

means that each point on the body rotates the same angle.

vA = vC = ω · r,

vB = 0.

Angular velocity [rad/s]ααω &==
dt

d

Linear velocity [m/s]

Fig. [http://energyeducation.ca/encyclopedia/Gear][rad/s] 
30

nπω = n [rpm]
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Rotational motion

Plane motion

To remind, plane motion of a rigid body occurs when all points of the body

move in planes parallel to some stationary plane. Translational and rotary

motion are special cases of plane motion.
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The paths of the points, velocity and acceleration values are generally

different from each other

Center of the circleInstantaneous centre (on the 

begining of simulation)

Blue point

Plane motion

Plane motion – method of analysis

1. Based on the equation of motion and its form after differentiation,

positions, velocities and accelerations are determined.

In order to facilitate the analysis of planar motion it can be treated as:

1. Composed of translational and rotational motion.

2. Rotation about the instantaneous center.

3. The third possibility to calculate the velocity in this motion is to use the

relationship between the velocities of the points of a rigid body (velocity

projection method).
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Plane motion as a motion composed of translational and rotational motion

This method makes it possible to determine the velocity of the point of a rigid

body by graphical approach if the following is known:

 velocity of one point (value, direction),

 direction of the searched velocity.

The displacement of a link, in an infinitely short period of time, is treated as

composed of two motions - translational and rotational. In the first step, the

wheel moves at speed vB from point B1 to B2, and then rotates in relation to

this point B2 until point C1’ reaches position C2 . The points on the link can be

chosen freely.
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The relative velocity is always perpendicular to the straight line passing

through the points under consideration and is equal to:

The velocity of a point C is equal to the sum of the velocity of point B in

translational motion and the velocity of point C relative to the point B in

rotational motion:
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Plane motion as a motion composed of translational and rotational motion
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The same displacement can be considered as translational motion of the rigid

body to change the position of the point from C1 to C2, and then rotating

about that point so that point B1’ reaches position B2.
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Translational motion
Rotational motion

Plane motion as a motion composed of translational and rotational motion

Having information about the velocity of one point and the direction of the

unknown velocity and the relative speed, we can determine it graphically.
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The acceleration of a point is determined analogously as the sum of the

acceleration in translational motion and the relative acceleration of a point in

rotational motion.

.
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The relative acceleration aCB consists of normal and tangential acceleration

because the link rotates:

Plane motion as a motion composed of translational and rotational motion

Translational motion Rotational motion

Knowing the acceleration of one point of the rigid body and the relative

normal acceleration, the direction of the tangential acceleration and the

direction of the unknown acceleration, it is possible to graphically determine

the acceleration of the second point.
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If the acceleration of point B is known and the acceleration of point C is

determined, the method is analogous and the following relationships apply:

B1

C1

C2

ω

A1 A2

BCCB

BCCB

aa

aaa
rr

rrr

−=
+=   

The given formulas are correct for any

chosen points
B2

Plane motion as a motion composed of translational and rotational motion

Plane motion as an instantaneous rotational motion

In order to determine the velocity of any point of a rigid body, in practice, it is

required to be known:

 velocity of one point,

 the location of the instantaneous center.

Any plane motion of the link can be represented as an infinitely short rotation about

the instantaneous center. This center has a velocity of zero only at the considered

moment. It’s position is different in next moment.
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Examples of determining the location of instantaneous centers are presented on 

below figures

Given: 

vA, ω

Given : 

vA, vB

Given : 

vA, vB

Given : 

vA, vB

Given : 

vA, vB

Fig. [Felis 2007]

Plane motion as an instantaneous rotational motion

If the link makes translation motion, for which the angular velocity is zero, the

instantaneous centre do not exist.

vA

vB = vA

ω = 0ω = 0

A

A
B

B

Plane motion as an instantaneous rotational motion
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In order to determine the acceleration of any point of a rigid body in practice, the

knowledge is required about:

 the acceleration of two points.

Analogously to the instantaneous centre (of rotation) exist instantaneous centre of

acceleration, i.e. point about which acceleration at given moment is equal zero.

It is not a frequently used method because of the required information of the

acceleration of two points. The potential use may be in the case of links with more

than two nodes.

The angle β that forms the acceleration vector with the straight line passing through

the instantaneous center of acceleration S and the beginning of the acceleration

vector is constant and does not depend on the point position. It is always an acute

angle.

Fig. [Leyko 2012]Fig. [Leyko 2012]

Plane motion as an instantaneous rotational motion

Example
Find the acceleration of point C of the rigid body using the method of instantaneous centre of

acceleration. Given: acceleration of points A and B.

The solution uses the relationship to obtain the angle β, determined by the

relative acceleration aBA and the straight line passing through the points A i B. Then,

remembering that the angle ψ is constant for all

point of link, the acceleration of point C is determined.
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More details can be find in Leyko 2012 and Młynarski 1992 (in polish).

Plane motion as an instantaneous rotational motion
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Plane motion - velocity projection method

This method makes it possible to determine the velocity of the point of a rigid body, if

known:

 velocity of one point,

 direction of the searched velocity.

The relationship between the velocities of the points of a rigid body results from the

constant distance between them.

This method is based on the relationship that projections of velocities of any points of

a rigid body, lying on a common straight line, on this straight line, are equal to each

other.

vA

vB

A

B

x

vAx

vBx

α

β

( ) ( )βvαv

 vv

BA

BxAx

coscos =
=

Compound motion

There are mechanisms in engineering in which one link moves after another link that is also

in motion. A good example is the movable guide and slider. Direct determination of the

velocity and acceleration of the slider in relation to the base (stationary reference frame) is a

difficult task. Therefore, the movement of the slider can be divided and considered in

relation to the second movable reference frame associated with the guide. The following

terminology is used to describe these motions:

 absolute motion - the motion of the element in relation to the stationary reference

frame,

 relative motion - the motion of the element in relation to the movable reference frame,

 lifting motion - the motion of a movable reference frame in relation to the stationary

reference frame.

Fig. Mechanism of planing machine

[Morecki 1987]

In the example of the movable guide and the slider, the

absolute motion is the motion of slider respect to the

base, the relative motion is the motion of the slider

respect to the guide, the lifting motion is the motion of

the guide respect to the base.
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The formulas for calculating velocity and acceleration with the use of compound

motion will be presented on the example of a slider and a moving guide.

The slider (absolute) velocity vC at point C is equal to:

CBBC vvv
rrr

+=
vCB - it is the relative velocity (in relative motion) of point C with respect to B and it is

always tangent to the guide (we imagine that the guide is stationary and slider is

moving).

Fig. [Miller 1996]

vB – is the velocity of point B, i.e. lifting velocity. Point B

belongs to guide and at considered moment have the same

position as point C that belongs to slider.

The velocity of point B results from motion of the guide and

it should be known. The guide may be in translational,

rotational or plane motion.

Compound motion

Acceleration of point C is equal:

c
CB

t
CB

n
CBCB aaaa

rrrr
++=

CBBC aaa
rrr

+=

aCB – acceleration of point C (that belongs to slider) relative to point B (that belongs to guide) 

Normal

acceleration

Tangential

acceleration

Coriolis 

acceleration

Fig. [Miller 1996]

Compound motion

aB – acceleration of point B in relations to the frame (stationary reference frame). 
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ρ – radius of the guide in point under consideration.

If the guide is rectilinear (ρ = ∞), normal

acceleration is equal 0

n

CBa Normal acceleration

ρ

2
CBn

CB

v
a =

0
2

=
∞

= CBn
CB

v
a
r

The acceleration direction is consistent with the radius of the 

curvature of the guide and is directed towards its center

Fig. [Miller 1996]

Compound motion

t

CBa Tangential acceleration

dt

dv
a CBt

CB = The direction of the tangential acceleration is tangent 

to the path (guide)

Fig. [Miller 1996]

Compound motion
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c

CBa Coriolis acceleration

CB

c

CB va ×= ω2

The direction of the Coriolis acceleration is determined

by the rotation of the relative velocity vector vCB

through a right angle in the direction of angular

velocity ω.

The Coriolis acceleration is 0 when the angular velocity

ω = 0 (guide is not moving or makes translational

motion) or the relative velocity vCB = 0 (the slider is not

moving with respect to the guide).

Fig. [Miller 1996]

Compound motion

Counterclockwise

direction

Methods of kinematic analysis of mechanisms

Methods of analysis:

 analytical,

 numerical,

 graphical,

 experimental.

There are also their combinations, such as the combination of analytical and

graphical methods – grapho-analytical methods.

Due to the form of classes and the advantages of simplicity of determination

and help in understanding the essence of kinematic analysis, grapho-

analytical methods will be used.

How many methods should an engineer know?
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Analitycal methods

Based on the geometric dependencies, the motion of the mechanism can be

described by mathematical formulas. For this purpose: vector notation,

matrix notation, complex number, trigonometric or algebraic equations are

used. In this way, dependencies describing the positions of the links are

obtained. Then you can get formulas for velocity and acceleration by

differentiating them with respect to time.

Analytical methods are quite difficult and laborious. However, the obtained

results are valuable because:

 enable the analysis of the influence of the geometry of the mechanism on

its kinematics,

 can be used for any mechanism of a certain type,

 a solution is obtained for all possible positions with very high accuracy.

Analytical methods - vector loop equation

It is one of the basic methods used to analyze plane mechanisms with analytical

methods. Based on the kinematic diagram, a vector polygon is created. The

beginnings and ends of vectors are determined by the positions of the kinematic pairs.

Since the vectors form a polygon, the equation is:

0...   321

1

∑ =++++=
=

n

n

i

i lllll
rrrrr

where ln are vectors that belong to polygon
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Analytical methods - vector loop equation (example)

Four bar mechanism

Two angles θ3 and θ4 as well as angular velocities and accelerations should be

determined. The lengths of the links and the angles θ1 and θ2 are known.

The x-axis direction is collinear with the l1 base. Angles are measured

counterclockwise from the x-axis (the measuring direction can be either way, it is

important to follow the assumptions throughout the whole calculation process).

Step 1: Draw and label the vectors

Step 2: Write the equation

04321 =+++ llll
rrrr

 

The final result of the solution are two equations [Myszka 2012]:
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And scalar equation: about x axis and y axis
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Analytical methods - vector loop equation (example)



19

In order to obtain the equation for angular velocity, first order derivative of

angular displacement is done and second order derivative of angular

displacement to get acceleration [Myszka 2012]:
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
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The full derivation of the formulas for

displacement, velocity and acceleration

can be found in Młynarski 1992.

Analytical methods - vector loop equation (example)

Numerical methods

Numerical methods have two main applications in the analysis of mechanisms:

1. Performing calculations in dedicated programs only on the basis of defining the

mechanism and boundary conditions.

A significant group of dedicated programs uses the numerical method of multiboby simulation

(MBS). It is possible to model planar (2D and 3D) and spatial mechanisms with rigid and

deformable members, taking into account friction and contacts, damping, elasticity, external

forces and moments.

2. Obtaining results from equations for the full range of motion and various

parameters of the mechanism. Also solving equations for that exact solution is not

known and only this method is suitable.

Programming languages, spreadsheets and computing programs with a high-level programming

language are used. It is possible to obtain results directly from algebraic equations without

substituting specific data, through symbolic calculations (e.g. Mathematica, Matlab).
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Numerical methods – example in NX

1. Performing calculations in dedicated programs only on the basis of defining the

mechanism and boundary conditions.

Determine the angular displacement, velocity and 

acceleration for the rocker in four bar mechanism: 

L1 = 0.5;  % Frame length [m]

L2 = 0.2;  % Crank length [m]

L3 = 0.6;  % Coupler length [m]

L4 = 0.4;  % Rocker length[m]

ω = 2Π % Angular velocity[rad/s]

ε = 0      % angular acceleration[rad/s2]

CAD model

Mechanism definition

1. Performing calculations in dedicated programs only on the basis of defining the mechanism

and boundary conditions.
Results for rocker

Numerical methods – example in NX
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Numerical methods – Matlab example

2. Obtaining results from equations for the full range of motion and various

parameters of the mechanism.
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

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Determine the angular displacement,

velocity and acceleration for the

rocker in four bar mechanism :
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Equations in Matlab

[Myszka 2012]:

2. Obtaining results from equations for the full range of motion and various parameters of the

mechanism.
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[Myszka 2012]
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Numerical methods – Matlab example
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2. Obtaining results from equations for the full range of motion and various parameters of the

mechanism.

( ) ( ) ( )
( )344

3
2
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2
3322

2
23222
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sin
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−
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[Myszka 2012]

=

NX

Numerical methods – Matlab example

2. Obtaining results from equations for the full range of motion and various parameters of the

mechanism.

[Felis 2008]

=

NX

[Miller 1996]

Aby oznaczenia były zgodne z rysunkiem

ε1 = ε2; ε2 = ε3; ε3 = ε4; ω1 = ω2 itd.

φ1 = θ2 itd.

=

Numerical methods – Matlab example
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2. Obtaining results from equations for the full range of motion and various parameters of the

mechanism.

[Młynarski 1992]

NX

Variables must be substitute to be consistent with drawing

ε1 = ε2; ε2 = ε4; φ1 = θ2; φ2 = θ3; φ3 = θ4

=

Numerical methods – Matlab example

Grapho-analytical method

Method of determining velocity and accelerations by grapho-analytical method will

be discussed. In order to determine the kinematic parameters, a kinematic diagram

as well as velocity and acceleration diagrams should be drawn. It requires the

adoption of appropriate drawing scale.

The drawing scale is defined as the ratio of the value of the physical quantity to the

value of the drawing quantity:


� =
�

�
 

�

��
lenght scale,


� =
�

�

�/�

��
linear velocity scale,


� =
�

�

�/��

��
linear acceleration scale.

Example

1. Given: velocity v = 500 m/s, scale 
� = 10
�/�

��
. Find the length of the velocity vector in the drawing.

� =
�


�

�

�
/

�/�

��
=

500 �/�

10
�/�
��

= 50 ��

2. Given: length of velocity (v) = 50 mm, scale 
� = 10
�/�

��
. Find the value of velocity.

� = � 
� ��
�/�

��
= 50 �� · 10

�
�

��
= 500 �/�
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Velocity and acceleration diagrams will be discussed for:

1. Single three node link.

2. Assur group of II class.

2.1. Assur group of II class with revolute pair.

2.2. Assur group of II class with a sliding pair.

3. Assur group of III class with four links and revolute pairs.

4. An example of determining the velocity and acceleration for four bar mechanism.

Grapho-analytical method

1. Velocity and acceleration diagrams for three node link

S – instantaneous centre

Πv – Velocity origin - start

point for absolute velocity

vectors
Fig. [Miller 1996]

Grapho-analytical method
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1. Velocity and acceleration diagrams for three node link

Fig. [Miller 1996]

ΔBCM ~ Δbcm

The triangle Δ BCM is similar to the triangle Δbcm and rotated by an angle of 90 ° according to

the angular velocity ω (it is counterclockwise in the figure). This property can be used to check

the correctness of the velocity diagram or to determine a third velocity.

Rotate 90° in 

the same 

direction as ω

Grapho-analytical method

1. Velocity and acceleration diagrams for three node link

Fig. [Miller 1996]P – Instantaneous centre of acceleraton

Πa – Acceleration origin -

start point for absolute

acceleration vectors

Grapho-analytical method
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1. Velocity and acceleration diagrams for three node link

Rys. [Miller 1996]

ΔBCM ~ Δbcm

The triangle ΔBCM is similar to the triangle Δbcm and rotated through the angle 180° −

��� !
"

#$
according to the angular acceleration ε (in the figure it is counterclockwise). This

property can be used to check the correctness of the acceleration diagram or to determine

the acceleration of third point.

180° − ��� !
"

#$
same as ε

Grapho-analytical method

2.1. Veolcity and acceleration diagrams for Assur group of II class with revolute pair

The velocities and accelerations of points A and C are known. Determine the velocity and

acceleration of point B using the grapho-analytical method.

.









+=

+=

⊥

⊥

BC

BCCB

AB

BAAB

vvv

vvv

rrr

rrr
 

BBB vvv
rrr

== 21

One underline indicates the direction is

known, two underlines: values and

direction

In order to determine the velocity of point B, the

system of vector equations is solved graphically:

Grapho-analytical method



27

In order to determine the acceleration of point B, the system of vector equations is graphically

and analytically solved:









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t
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n
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n
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rrrrrr

rrrrrr

||

||

BBB aaa
rrr

== 21

The value of the relative normal

acceleration is analytically determined:

BC

v
a

AB

v
a

BCn
BC

BAn
BA

2

2

=

=

Grapho-analytical method

2.1. Veolcity and acceleration diagrams for Assur group of II class with revolute pair

2.2. Veolcity and acceleration diagrams for Assur group of II class with sliding pair

The velocities and accelerations of points A and C are known. Determine the velocities and

accelerations of points B1 and B2 using the grapho-analytical method (Fig. 1).

In this case, there is too little infromation to directly determine the velocity of points B1 and

B2. It is required to know the velocity of two points for one element. For this purpose, two

additional points are determined: C1 belonging to the link 1 and A2 belonging to the link 2 (it

can be imagined as welding plates to the elements on which the introduced points are located

- Fig. 2). The position of these points coincides in the considered position with points A1 and

C2. Taking such a position of points simplifies the determination of the directions of relative

velocities and the drawing of velocity diagram.

Fig. 1 Fig. 2

Grapho-analytical method
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2.2. Veolcity and acceleration diagrams for Assur

group of II class with sliding pair

Now it is necessary to determine the velocities of the assumed points, for

which systems of vector equations can be written, for the point A2 :
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and for the point C1:
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Grapho-analytical method

Equation assumption: motion

is composed of translational 

and rotational motion

Equation assumption: 

compound motion

2.2. Veolcity and acceleration diagrams for Assur group of II class with sliding pair

Knowing the velocities of two different points for each of the link, the determination of the

velocity of the points B1 and B2 may have the following course:

I. Treating the plane motion of links as composed of translational and rotational motion, one

can write systems of vector equations and solve them graphically:

II. Determine the instantaneous centres and directions of the unknown velocities, and then:

a) Calculate angular velocity (e.g. ω = vA1/|O1A|) and unknown velocitiec vB1 = ω ·|O1B|

i vB2 = ω ·|O2B|. The angular velocity ω is the same for both links and it results from the

construction of the structural group (rigid connection in the link 1 of the rectilinear part with

the slider).

b) Using the velocity projection method, graphically determine or calculate the velocities of

points from the relationship:

III. Determine the velocity vectors using the graphical method from the similarity of figures (in

this case triangles).

Methods I and III will be presented
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2.2. Veolcity and acceleration diagrams

for Assur group of II class with sliding pair

Now it is necessary to determine the velocity of the

points B1 and B2 for which systems of vector equations

can be written:
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2.2. Veolcity and acceleration diagrams

for Assur group of II class with sliding pair

Velocities of the B1 and B2 points determined from the

similarity of triangles:

ΔA1B1C1 ~ Δ a1b1c1

ΔA2B2C2 ~ Δ a2b2c2

Grapho-analytical method
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2.2. Veolcity and acceleration diagrams for Assur group of II class with sliding pair

The procedure of determining accelerations is very similar to determining the velocities. The

accelerations for two additional points C1 and A2 should also be determined from the equation systems:










++=

++=

⊥

⊥

BC

t
AA

BC

c
AAAA

AC

t
CA

AC

n
CACA

aaaa

aaaa

||

121212

22

||

2222

 

 

rrrr

rrrr










++=

++=

⊥

⊥

BC

t
CC

BC

c
CCCC

AC

t
AC

AC

n
ACAC

aaaa

aaaa

||

212121

11

||

1111

 

 

rrrr

rrrr

∞=→=

=

=

ρa

ωv a

AC

v
a

n
CC

CC
c

CC

ACn
AC

0

2

21

2121

2
11

11

r
∞=→=

=

=

ρa

ωv a

AC

v
a

n
AA

AA
c

AA

CAn
CA

0

2

12

1212

2
22

22

r

Grapho-analytical method

2.2. Veolcity and acceleration diagrams for Assur group of II class with sliding pair
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Rotate 90° in the same 

direction as ω
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2.2. Veolcity and acceleration diagrams for Assur group of II class with sliding pair

Knowing the accelerations of two different points for each of the link, the determination of the

accelerations of the points B1 and B2 may have the following course:

I. Treating the plane motion of links as composed of translational and rotational motion, one

can write systems of vector equations and solve them graphically:

II. Determine the instantaneous centres of acceleration and then unknown accelerations. The

angular acceleration ε is identical for both members and it results from the construction of

the structural group (a rigid connection in the member 1 of the rectilinear part with the

slider).

III. Determine the acceleration vectors using the graphical method from the similarity of figures

(in this case triangles).

Method I will be presented
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2.2. Veolcity and acceleration diagrams for Assur group of II class with sliding pair
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3. Veolcity and acceleration diagrams for Assur group of III class

Fig. 1. Class III Assur group
[based on Miller 1996]

The velocities and accelerations of points D, E and F of the class III Assur group shown in

Figure 1 are known. The velocities and accelerations of points A, B and C shall be determined.

For this purpose, the so-called Assur’s points R, S or T lying at the intersection of two straight

lines passing through pairs of two-node links (Fig. 2) are introduced. They are rigidly

connected to the three-node ABC link. One Assur’s point is enough to find unknown velocities

and accelerations.

Fig. 2. Assur’s points: R, S i T
[based on Miller 1996]

Grapho-analytical method

3. Veolcity and acceleration diagrams for Assur group of III class

Fig. [Based on Miller 1996]

The velocity of point R will be determined first, which will allow in the next step to calculate

the velocity of point A, B or C. Treating the motion of the ABCR link as comopsed of

translational and rotarional motion, the system of equations is obtained:
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There are too many unknowns to get a solution. Points A and B also belong to the links AD and

BE for which the velocities of points D and E are known, so there are relationships:

BE

BEEB

AD

ADDA vvvvvv

⊥⊥

+=+=
rrrrrr

      ;

Substituting the equations into the system of

equations we get:









++=

++=

⊥⊥

⊥⊥
 

 

BR

RB

BE

BEER

AR

RA

AD

ADDR

vvvv

vvvv

rrrr

rrrr

Grapho-analytical method



33

3. Veolcity and acceleration diagrams for Assur group of III class

The reduction of the directions of

relative velocities to two is due to the

non-accidental selection of the R point,

and it is already possible to solve the

system of equations:
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The velocity of any point of the three-node

link can be determined, for point C the

system of equations has the form
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Fig. [Based on Miller 1996]

3. Veolcity and acceleration diagrams for Assur group of III class

Determining the accelerations also begins with determining the acceleration of the R point,

the system of equations has the form:
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The acceleration of any point of the three-node link can

already be determined, for point C the system of

equations has the form:
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Fig. [Based on Miller 1996]
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3. Veolcity and acceleration diagrams for Assur group of III class
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Fig. [Based on Miller 1996]

4. An example of determining the velocity and acceleration for four bar mechanism

Determine the velocity and acceleration for rocker of four bar mechanism. Given:

L1 = 0.5;  % Frame length [m]

L2 = 0.2;  % Crank length [m]

L3 = 0.6;  % Coupler length [m]

L4 = 0.4;  % Rocker length[m]

ω2 = 2Π % Angular velocity[rad/s]

ε2 = 0      % angular acceleration[rad/s2]

α = 120     % angular position of crank[°]

Velocity of point B = B2 = B3 is equal: 
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m
  01,0vκ

m/s  4,02,021 ππω =⋅== ABB lv

The velocity scale must be determined for drawing velocity diagram.
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The velocity of point C is given by the equation:
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The angular velocity is:

The length of vectors vC and vCB were read from

velocity diagram and velocities were calculated:
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4. An example of determining the velocity and acceleration for four bar mechanism

The acceleration of point C is:

The known normal accelerations should be calculated, the acceleration scale is assumed 
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and after substituting the component accelerations:

( )
( )

( )

( ) mm  11907748924,10
05,0

25095387446,0

s

m
  25095387446,0

6,0

55292246,0

mm  29136704174,157
05,0

78956835208,7

s

m
  78956835208,7

2,0

4,0

mm  22429975514,94
05,0

77121498775,4

s

m
  77121498775,4

4,0

372902018,1

2

22

2

22

2

22

===

===

===

===

===

===

a

n
CBn

CB

CBn
CB

a

B
B

B
B

a

n
Cn

C

Cn
C

a
a

BC

v
a

a
a

AB

v
a

a
a

CD

v
a

κ

κ

π

κ

Grapho-analytical method

4. An example of determining the velocity and acceleration for four bar mechanism
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The lengths of the vectors aC and ��
� were measured from

the diagram and the linear accelerations were calculated

and angular acceleration
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4. An example of determining the velocity and acceleration for four bar mechanism

4. An example of determining the velocity and acceleration for four bar mechanism

Comparison of results for the analytical, numerical and grapho-analytical methods

Results for the grapho-analytical method (velocity and

acceleration diagrams were made in the SolidEdge program):

ω4 = 3,432255045 rad/s

ε4 = 4,857567975 rad/s2

Results for analytical formulas (calculations carried out

in Matlab):

ω4 = 3.244092667733456 rad/s

ε4 = 4.444153407551584 rad/s2

Results for the numerical method (mechanism simulation and

results from the NX program):

ω4 = 3,24409259368118 rad/s

ε4 = 4,44415324003924 rad/s2

Grapho-analytical method
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