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• The concept of fractional derivatives goes back to a discussion that
Leibniz and L’Hospital had over 300 years ago about the half order
derivative. The problem attracted attention of many scientist (see
Podlubny Fractional Differential Equations. San Diego: Academic
Press, 1999, and Petras Fractional-Order Nonlinear Systems: Model-
ing, Analysis and Simulation. New York: Springer, 2010).

• Generally, it is assumed that the fractional order derivative is useful
for a better description of real phenomena. For example,
* damping in mechanical devices is commonly modeled as a function
(linear or nonlinear) of first order derivative (velocity) and can be
replaced by fractional damping (in most cases of a composite origin).
To solve a fractional differential equation, one has to approximate the
corresponding derivative operator, which means including information
about previous states of the system (the so-called memory effect).

• Fractional order introduces the effect of multiple relaxation rates.
This would be positive for energy harvesting in the context of the
impedance matching principle to get a band of possible optimum fre-
quencies (broadening of a frequency band).



• Fractional control can be applied to a flexible manipulator which is

more safe in contact with human.

Multiple relaxation rates can introduce multiscale damping effect.



M. Pouya, P.V. Pashaki, The optimal design of fractional sliding mode

control based on multi-objective genetic algorithms for a two-link flex-

ible manipulator, Advances in Science and Technology Research Jour-

nal 11 (2017) 5665.



Standard descriptions of systems with multiple relaxation

response

• Constitutive models of linear viscoelasticity

* Hook’s low: σ = Eε

* Maxwell model

dε
dt = dεD

dt + dεS
dt = σ

η + 1
E
dσ
dt

* Kelvin-Voigt model

σ(t) = Eε(t) + ηdε(t)dt



* Standard linear solid model

dε
dt =

E2
η

(
η
E2

dσ
dt+σ−E1ε

)
E1+E2

* Generalized Maxwell Model

where multiple Ei, ηi produces the multiple relax-

ation time τ (ε(t) = ε0e
− tτ ) ,



Alternatively, the stress-strain rate relationship can be general-

ized:

σ = ηdεdt → σ = ηd
qε
dtq with a fractional order q

• Fractional derivative is introduced to describe the system with mul-

tiple relaxation times. This derivative can be expressed as a combi-

nation of conventional (of integer order) integral and derivative. It is

linear but introduces the memory (or history of evolution or hystere-

sis if additional nonlinearities are present) to the description of the

system state.

• Simultaneously, it also introduces additional degrees of freedom.

Such multidimensional dynamical systems meet difficulties in nonlin-

ear analysis and require a special treatment for analysis of the dy-

namical response of a system including nonperiodic solutions or chaos

detection.



We start with the standard well known nonlinear Duffing equation:

d2x

dt2
+ α

dx

dt
− x+ x3 = δ cos (ωt)

where α ≥ 0 denotes the damping coefficient, δ denotes the amplitude

and ω denotes the frequency of external excitation. The model de-

scribes the dynamics of a mass in a double potential well and exhibits

chaotic behaviour.



To introduce a fractional derivative to the dynamical system, the

widely used Grünwald-Letnikov and Riemman-Liouville definitions are

applied. Both of them are particular cases of a general fractional or-

der operator - namely, the former represents the q order derivative,

while the later represents the q fold integral. In this sense, the class

of functions described by the Riemman-Liouville definition is broader

(function must be integrable) than the one defined by Grünwald and

Letnikov (function must be m+ 1 continuously differentiable). How-

ever, for a function of the Grünwald - Letnikov class, both definitions

are equivalent.



Introducing the first order derivative, we will briefly demonstrate the

idea of noninteger derivative. Let us consider the first and second

order derivative:

f ′(t) = lim
h→0

f(t)− f(t− h)

h

f ′′(t) = lim
h→0

f ′(t)− f ′(t− h)

h

= lim
h→0

f(t)− 2f(t− h) + f(t− 2h)

h2

Continuing, one can write a general form of the n-th order derivative:

fn(t) = lim
h→0

1

hn

n∑
j=0

(−1)j
(n
j

)
f(t− jh) n ∈ N

In analogy to the original Newton expansion

(x+ y)r =
∞∑
k=0

(r
k

)
xkyr−k.



fn(t) = lim
h→0

1

hn

∞∑
j=0

(−1)j
(n
j

)
f(t− jh) n ∈ N

which leads to the Grünwald - Letnikov definition:

dqf

dtq
≡L Dtqf(t)

= lim
h→0

1

hq

[
t−a
h

]∑
j=0

(−1)j
(q
j

)
f(t− jh),

where q > 0 and the binomial coefficients can be extended to real

numbers using the Euler Gamma function(q
j

)
=

q!

j!(q − j)!
=

Γ(q + 1)

Γ(j + 1)Γ(q − j + 1)
;

a pair of square brackets [.] appearing in the upper limit of the sum

denotes the integer part, while L is the length of the memory, respec-

tively.



According to the short memory principle (Podlubny 1999,Petras 2010),

the length of system memory can be substantially reduced in the nu-

merical algorithm to get reliable results. Thus, the derivative can be

expressed

LDt
qf(t) = lim

h→0

1

hq

[N(t)]∑
j=0

(−1)j
(q
j

)
f(t− jh),

where N(t) = min(t−Lh , Lh). Note that by this choice we do not need

initial conditions before t = 0, as is usually required for other systems

with memory. Now, the Duffing system with a fractional damping

term has the following form:

d2x

dt2
+ α

dqx

dtq
− x+ x3 = δ cos (ωt)

Last equation can be decomposed into a set of equations of lower

degree:

LD
1
t x(t) = y(t)

LDt
qx(t) = w(t)

LD
1
t y(t) = x(t) + αw(t)− x3(t) + δ cos (ωt)



The set of equations can be written in the discretized form by the

following fractional order Newton-Leipnik algorithm (Petras 2010):

x(tk) = x(tk−1) + y(tk−1)h

x(tk) = w(tk−1)hq −
N−1∑
j=1

c
(q)
j x(tk−j)

y(tk) = y(tk−1) + [αw(tk−1)− x3(tk−1)

+ δ cos (ω(tk−1))]h,

where h is the integration step and the coefficients c
(q)
j satisfy the

following recursive relations:

c
(q)
0 = 1, c

(q)
j =

(
1−

1 + q

j

)
c
q)
j−1.



Solution identification
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The phase portraits and Poincaré points for the period one numerical solu-

tion (a), with q = 0.6; the period two numerical solution (b) with q = 0.8; the

chaotic numerical solution with q = 1.0. Other parameters α = 0.15, δ = 0.3

and ω = 1.0 and the initial conditions (x0, y0) = (0.2,0.3).

(Syta et al. Chaos

24, 013107, 2014)



The bifurcation diagram of the x coordinate versus the order of the derivative

q ∈ [0.01,2.0]; ∆q = 0.001 and initial conditions for each q were (x0, y0) =

(0.2,0.3). Other system parameters are: α = 0.15, δ = 0.3, and ω = 1.0.
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(Test 0-1 for chaotic solutions) K versus q with the sampling ∆q = 0.001,

the initial conditions for each q were: (x0, y0) = (0.2,0.3). Other system

parameters: α = 0.15, δ = 0.3, and ω = 1.0.
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Maximal Lyapunov Exponent as a function of the fractional order q ∈ [0.01,2.0]

and ∆q = 0.001. The distance between neighbouring trajectories has been

estimated in one tenth of the excitation period interval T (T = 2π/ω). Other

system parameters: α = 0.15, δ = 0.3, and ω = 1.0.
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(a) (b) (c)

l Basins of attraction (a) for q = 0.6 (the uniform colour covering the whole

region of initial conditions corresponds to the global period one regular so-

lution); (b) for q = 0.8 (the colours denote the interplay of four different

solutions, yellow - denotes the period one regular solution; green and blue

- two different period two solutions; red - non-periodic (chaotic) solution);

(c) for q = 1.0 (the colours denote different solutions, yellow - denotes the

period one regular solution while red - non-periodic (chaotic) solution).



Properties of the fractional system

• The fractional order of damping introduces memory effects that

extend the dimension of the phase space. As a consequence of an un-

certainty in the dynamical system dimension, the maximal Lyapunov

exponent values may not correspond to the properties of the attrac-

tor. In that case, the 0-1 method appeared to give more adequate

results.

• We also found sensitivity to initial condition in the considered sys-

tem. Interestingly, different values of the order of damping change

dramatically the basins of attraction: from one attractor (periodic)

to four attractors (periodic, two different period two solutions and

none-periodic) exhibiting Wada basins, and finally, to two attractors

(period one and non-periodic).

• One should note that any system with a fractional derivative is

characterized by long transient intervals appearing before reaching the

stationary state. This property complicates the investigation of the

system dynamics. We would like to stress that our results for dynam-

ics of the system were obtained after cutting off the corresponding

long transients.



Dynamics of the fractionally damped broadband
piezoelectric energy generator

BROAD BAND EFFECT

MF Daqaq, R Masana, A Erturk, DD Quinn, On the Role of Nonlinear-
ities in Vibratory Energy Harvesting: A Critical Review and Discussion,
Applied Mechanics Reviews 66, 040801 (2014)



MF Daqaq, R Masana, A Erturk, DD Quinn, Applied Mechanics Re-

views 66, 040801 (2014)



Our results on energy harvesting with
a fractional system properties.

( Cao et al. Nonlinear Dynamics 2015, and Cao et

al. 2015).

The nonlinear energy harvester with a flexible beam, piezoelec-

tric layer, and external magnets



In the present model we considered the vertical flexible beam with frac-
tional damping and nonharmonic potential dependent on the magnets
orientation angle. The differential equations reads:

Mz̈(t) + CDαz(t) +Kz(t) + Fm −Θu(t) = Fe

Cpu̇(t) + Θz(t) +R−1v(t) = 0.

There the system parameters have been identified from the experi-
mental : M = 0.0061kg; C = 0.02467633Ns/m ; K = 63.7633N/m;
Θ = 9.1908212 × 10−5N/V and other parameters after. The Fm
is the magnetic force, while Fe excitation harmonic force Fe/M =
A sin(2πft). In the following simulations we used the fixed A = 0.56g,
where g is the gravitational acceleration, and f = 10Hz.

The nonlinear magnetic force expanded as a polynomial:

Fm = a0 + a1z(t) + a2z
2(t) + ...+ anz

n(t),

where a0 = 0 ,a1 = 79.1661; a2 = 0 ; a3 = −2.6078× 105 for zero of
the inclination angle of external magnets.



Simulation results and discussion

The fractional order of damping makes the significant changes in the

system response. The system goes through several bifurcations with

changing α.









Fractional order for machine diagnostics and struc-
tural health monitoring

invented by prof. Sulo Lahdelma (Oulu, Finland)





K. Karioja, S. Lahdelma, G. Litak, B. Ambrozkiewicz, Extracting peri-
odically repeating shocks in a gearbox from simultaneously occurring
random vibration, In: Fifteenth International Conference on Condi-
tion Monitoring and Machinery Failure Prevention Technologies (CM
2018/MFPT 2018), 2018, pp. 456-464.



The test equipment consisted of:

Bodywork of G.U.N.T. PT 500 test rig

1.1 kW electric motor manufactured by EMK

Nordac 700E frequency converter

Mdler 41200102 bevel gearbox with transmission ratio 1:2 (z1 =

54, z2 = 27)

Centrifugal pump with 3 blades on impeller for cavitation testing,

manufactured by G.U.N.T.

2 KTR claw clutches, with 4 claws on flexible elements



Enveloping is often utilised when aiming to de-

tect periodically repeating shocks from vibration

measurements. In following envelope is created

by first band pass filtering the signal, then rec-

tifying it and low pass filtering the resulting sig-

nal. Enveloping is a common method in condi-

tion monitoring. However, it is rarely applied to

any other signals than acceleration or velocity.

This may be adequate way, but there are more

possibilities.



It is a generally accepted fact that a cracked

tooth in a gear causes a shock once a revolution

of the gear. In this case it means the shock is

expected to occur at a frequency of 66.67 Hz.

Distinguishable peaks at that frequency and its

multiples are considered a sign of this type of

fault.









The Hilbert transform of the considered signal

x(t) is defined by an integral transform [Feldman

2011, Wang 2016]:

H[x(t)] = H1[x(t)] =
1

π

∫ ∞
−∞

x(τ)

t− τ
dτ,

where H1 denotes the conventional integer Hilbert

transform.



Its extension to the fractional Hilbert transform

is given [Wanf 2016] by the formula:

Hp[x(t)] = cos(pπ/2)H0[x(t)]+sin(pπ/2)H1[x(t)],

where H0[x(t)] = x(t).





Fractional order for synchronization

• R Kengne, R Tchitnga, A Mezatio, A Fomethe, G Litak,

Finite-time synchronization of fractional-order simplest two-

component chaotic oscillators European Physical Journal

B 90, 88, 2017

• Fractional-order two-component oscillator: stability and

network synchronization using a reduced number of con-

trol signals R Kengne, T Robert, SAK Tewa, G Litak, F

Anaclet, C Li, European Physical Journal B 91, 304, 2018







Conclusions

• The fractional derivative is introduced to describe mul-

tiple relaxation times in viscoelastic material properties.

Usually, fractional derivative modelling reduce the model

degree of freedom. This can lead to some confusion in

states description and/or their identification.

• The fractional derivative enables to adjust the best vari-

able to detect the failures in the dynamical structures.

This could be important as many variables, which are ob-

tained in experiments are projected or transformed. Frac-

tional derivation restores the information about the failures

in the dynamical structures.



• An efficient finite-time adaptive controller with fractional

properties was introduced. It was shown that the synchro-

nization of fractional-order systems is faster than that of

integer ones. We also proposed an application of such a

schema to cryptography.


