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e [ he concept of fractional derivatives goes back to a discussion that
Leibniz and L'Hospital had over 300 years ago about the half order
derivative. The problem attracted attention of many scientist (see
Podlubny Fractional Differential Equations. San Diego: Academic
Press, 1999, and Petras Fractional-Order Nonlinear Systems: Model-
ing, Analysis and Simulation. New York: Springer, 2010).

e Generally, it is assumed that the fractional order derivative is useful
for a better description of real phenomena. For example,

* damping in mechanical devices is commonly modeled as a function
(linear or nonlinear) of first order derivative (velocity) and can be
replaced by fractional damping (in most cases of a composite origin).
To solve a fractional differential equation, one has to approximate the
corresponding derivative operator, which means including information
about previous states of the system (the so-called memory effect).

e Fractional order introduces the effect of multiple relaxation rates.
This would be positive for energy harvesting in the context of

to get a band of possible optimum fre-
quencies (broadening of a frequency band).



e Fractional control can be applied to a flexible manipulator which
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Fig. 1. The schematic diagram of a two-link
rigid-flexible manipulator

more safe in contact with human.

Multiple relaxation rates can introduce multiscale damping effect.
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Fig. 7. Tracking response of PD sliding mode control Fig. 13. Tracking oy ﬂ.l "rD shd‘lng_n} ﬁdf.,
based on Multi objective Genetic Algorithm (joint 2) control based on Multi objective Genetic (joint 2)

M. Pouya, P.V. Pashaki, The optimal design of fractional sliding mode
control based on multi-objective genetic algorithms for a two-link flex-

ible manipulator, Advances in Science and Technology Research Jour-
nal 11 (2017) 5665.



Standard descriptions of systems with multiple relaxation
response

e Constitutive models of linear viscoelasticity

* Hook's low: o = E-«

* Maxwell model
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* Kelvin-Voigt model

E

o(t) = Be(t) + n%GP



* Standard linear solid model
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* Generalized Maxwell Model

where multiple E;, n; produces the multiple relax-
4
ation time 7 (e(t) = ege™ 7) ,



Alternatively, the stress-strain rate relationship can be general-
ized:

o= 77% = n%g with a fractional order g

e Fractional derivative is introduced to describe the system with mul-
tiple relaxation times. This derivative can be expressed as a combi-
nation of conventional (of integer order) integral and derivative. It is
linear but introduces the memory (or history of evolution or hystere-
sis if additional nonlinearities are present) to the description of the
system state.

e Simultaneously, it also introduces additional degrees of freedom.
Such multidimensional dynamical systems meet difficulties in nonlin-
ear analysis and require a special treatment for analysis of the dy-
namical response of a system including nonperiodic solutions or chaos
detection.



We start with the standard well known nonlinear Duffing equation:

d?z dx 3
72 aa—w—l—az = § cos (wt)

where @ > 0 denotes the damping coefficient, § denotes the amplitude
and w denotes the frequency of external excitation. The model de-
scribes the dynamics of a mass in a double potential well and exhibits
chaotic behaviour.




To introduce a fractional derivative to the dynamical system, the
widely used Grunwald-Letnikov and Riemman-Liouville definitions are
applied. Both of them are particular cases of a general fractional or-
der operator - namely, the former represents the g order derivative,
while the later represents the ¢ fold integral. In this sense, the class
of functions described by the Riemman-Liouville definition is broader
(function must be integrable) than the one defined by Griinwald and
Letnikov (function must be m 4+ 1 continuously differentiable). How-
ever, for a function of the Grunwald - Letnikov class, both definitions
are equivalent.



Introducing the first order derivative, we will briefly demonstrate the
idea of noninteger derivative. Let us consider the first and second
order derivative:

v o f@) = f(t—h)
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Continuing, one can write a general form of the n-th order derivative:

(1) = I|m—Z( 1)9( )f(t—]h) neN

Ohn

In analogy to the original Newton expansion

Gty =Y (D)aby
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which leads to the GrUnwaId - Letnikov definition:

dif

— = t"f(t)

im z (- 1>J(.)f<t—jh>,

where ¢ > 0 and the blnomlal coefficients can be extended to real
numbers using the Euler Gamma function

<Q) _ q! _ r(¢g+1)
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a pair of square brackets [.] appearing in the upper limit of the sum
denotes the integer part, while L is the length of the memory, respec-
tively.




According to the short memory principle (Podlubny 1999,Petras 2010),
the length of system memory can be substantially reduced in the nu-
merical algorithm to get reliable results. Thus, the derivative can be
expressed

1 N »
D/f(t) = lim — —1)J t—jh),
LD = fim s 3 () (;)f =i
where N(t) = min(3%,#). Note that by this choice we do not need
initial conditions before t = 0O, as is usually required for other systems
with memory. Now, the Duffing system with a fractional damping
term has the following form:
d?x d?x 3
— —— — x4+ x> = dcos (wt
a2 " Vg T (wt)
LLast equation can be decomposed into a set of equations of lower
degree:

Dz (t)
. Dilx(t)
D}y (t)

y (%)
w(t)
z(t) + aw(t) — z3(t) + 6 cos (wt)



The set of equations can be written in the discretized form by the
following fractional order Newton-Leipnik algorithm (Petras 2010):

r(ty) = x(tp—1) +y(tp—1)h
N—1

z(tp) = w(tg_1)h?!— > C§Q)fc(tk—j)
=

y(ty) = y(tp_1) + [aw(ty_1) — z°(tp_1)

+ dcos (w(tp—1))]h,

where h is the integration step and the coefficients c§q> satisfy the
following recursive relations:

ch) =1, A = (1 _1tg q) Ry
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The phase portraits and Poincaré p(gints for the period one numerical solu-
tion (a), with ¢ = 0.6; the period two numerical solution (b) with ¢ = 0.8; the
chaotic numerical solution with ¢ = 1.0. Other parameters o« = 0.15, § = 0.3

and w = 1.0 and the initial conditions (zg,y0) = (0.2,0.3).



T he bifurcation diagram of the x coordinate versus the order of the derivative
g € [0.01,2.0]; Ag = 0.001 and initial conditions for each ¢ were (xzg,yg) =
(0.2,0.3). Other system parameters are: « = 0.15, § = 0.3, and w = 1.0.
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(Test 0-1 for chaotic solutions) K versus g with the sampling Aqg = 0.001,

the initial conditions for each ¢ were: (zo,y0) = (0.2,0.3). Other system
parameters: « =0.15, § = 0.3, and w = 1.0.



MLE

Maximal Lyapunov Exponent as a function of the fractional order g € [0.01,2.0]
and Aqg = 0.001. The distance between neighbouring trajectories has been
estimated in one tenth of the excitation period interval T' (T = 27 /w). Other

system parameters: « = 0.15, § = 0.3, and w = 1.0.
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| Basins of attraction (a) for ¢ = 0.6 (the uniform colour covering the whole
region of initial conditions corresponds to the global period one regular so-
lution); (b) for ¢ = 0.8 (the colours denote the interplay of four different
solutions, vellow - denotes the period one regular solution; green and blue
- two different period two solutions; red - non-periodic (chaotic) solution);
(c) for ¢ = 1.0 (the colours denote different solutions, yellow - denotes the

period one regular solution while red - non-periodic (chaotic) solution).



Properties of the fractional system

e [ he fractional order of damping introduces memory effects that
extend the dimension of the phase space. As a conseqguence of an un-
certainty in the dynamical system dimension, the maximal Lyapunov
exponent values may not correspond to the properties of the attrac-
tor. In that case, the 0-1 method appeared to give more adequate
results.

e \We also found sensitivity to initial condition in the considered sys-
tem. Interestingly, different values of the order of damping change
dramatically the basins of attraction: from one attractor (periodic)
to four attractors (periodic, two different period two solutions and
none-periodic) exhibiting Wada basins, and finally, to two attractors
(period one and non-periodic).

e One should note that any system with a fractional derivative is
characterized by long transient intervals appearing before reaching the
stationary state. This property complicates the investigation of the
system dynamics. We would like to stress that our results for dynam-
ics of the system were obtained after cutting off the corresponding
long transients.



Dynamics of the fractionally damped broadband
piezoelectric energy generator
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Fig. 5 The dynamics of a nonlinear energy harvester can be fairly well understood via a simple
analogy with a particle moving along a cart. (a) Monostable potential and (b) bistable potential.

BROAD BAND EFFECT

Fig. 6 Fregquency response of the particle in the monostable
potential

MF Dagaq, R Masana, A Erturk, DD Quinn, On the Role of Nonlinear-
ities in Vibratory Energy Harvesting: A Critical Review and Discussion,
Applied Mechanics Reviews 66, 040801 (2014)



Fig. 10 Frequency response of the particle in a single potential
well of the bistable potential system when A< 4. Dashed lines
represent unstable periodic responses.

Fig. 11 Frequency response of the particle in a single potential
well of the bistable potential system when 4; <A< 4. Dashed
lines represent unstable periodic responses.

MF Daqaq, R Masana, A Erturk, DD Quinn, Applied Mechanics Re-
views 66, 040801 (2014)



Our results on energy harvesting with
a fractional system properties.

( Cao et al. Nonlinear Dynamics 2015, and Cao et

al. 2015).

T he nonlinear energy harvester with a flexible beam, piezoelec-
tric layer, and external magnets



In the present model we considered the vertical flexible beam with frac-
tional damping and nonharmonic potential dependent on the magnets
orientation angle. The differential equations reads:

ME(#) + CD%%(t) + Kz(t) + Fy — Ou(t) = F.

Cpi(t) + ©z(t) + R~ 1v(t) = 0.

There the system parameters have been identified from the experi-
mental : M = 0.0061kg; C = 0.02467633Ns/m ; K = 63.7633N/m;
© = 9.1908212 x 10 °N/V and other parameters after. The Fj,
is the magnetic force, while Fe excitation harmonic force Fe/M =
Asin(2xft). In the following simulations we used the fixed A = 0.564,
where g is the gravitational acceleration, and f = 10Hz.

The nonlinear magnetic force expanded as a polynomial:

Frn = ag 4+ a12(t) 4 a222(t) + ... + anz"(2),

where ag =0 ,a; = 79.1661; apb =0 ; a3 = —2.6078 x 10° for zero of
the inclination angle of external magnets.



Simulation results and discussion
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T he fractional order of damping makes the significant changes in the

system response. The system goes through several bifurcations with
changing c.
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Fractional order for machine diagnostics and struc-
tural health monitoring

Advanced signal processing

Higher order derivatives ™
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NATURE OF FAULT

1. Unbalance
2. Misalignment

3. Bent shaft

5. Mechanical looseness
6. Damaged or worn gears
7. Ol wrhirl

8. Cavitation

9. Electrical problems

10, Loose stator coils
11. Resonance

12. Poor lubrication

13. Roll surface defects

14. Lime kiln: misalignment and
damaged supporting rolls

4. Damaged rolling element bearings

FEATURES IN FAULT DETECTION

£ Professor Sulo Lahdelma 2008 | https://lahdelma. wordpress.com
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Figure 1. The testing equipment consisting of electric motor, bevel gear

and pump

K. Karioja, S. Lahdelma, G. Litak, B. Ambrozkiewicz, Extracting peri-
odically repeating shocks in a gearbox from simultaneously occurring
random vibration, In: Fifteenth International Conference on Condi-
tion Monitoring and Machinery Failure Prevention Technologies (CM
2018/MFPT 2018), 2018, pp. 456-464.



The test equipment consisted of:

Bodywork of G.U.N.T. PT 500 test rig

1.1 kW electric motor manufactured by EMK

Nordac 700E frequency converter

Mdler 41200102 bevel gearbox with transmission ratio 1:2 (z1 =
54,250 = 27)

Centrifugal pump with 3 blades on impeller for cavitation testing,
manufactured by G.U.N.T.

2 KTR claw clutches, with 4 claws on flexible elements



Enveloping is often utilised when aiming to de-
tect periodically repeating shocks from vibration
measurements. In following envelope is created
by first band pass filtering the signal, then rec-
tifying it and low pass filtering the resulting sig-
nal. Enveloping is a common method in condi-
tion monitoring. However, it is rarely applied to
any other signals than acceleration or velocity.
This may be adequate way, but there are more
possibilities.



It is a generally accepted fact that a cracked
tooth in a gear causes a shock once a revolution
of the gear. In this case it means the shock is
expected to occur at a frequency of 66.67 Hz.
Distinguishable peaks at that frequency and its

Mmultiples are considered a sign of this type of
fault.



Envelope spectrum ) Envelope spectrum

Frequency (Hz)

Figure 4. Envelope spectra of acceleration and snap from the gearbox

when cavitation occurs, band pass filtering from 1000 Hz to 2000 Hz
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Figure 5. Envelope spectra of acceleration and z'*°” from the pump when

cavitation occurs, band pass filtering from 1000 Hz to 2000 Hz
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Figure 6. Envelope spectra of 33 and snap from the pump when cavi-

tation occurs, band pass filtering from 1000 Hz to 2000 Hz
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Figure 7. Envelope spectra of acceleration and snap from the pump

without cavitation, band pass filtering from 1000 Hz to 2000 Hz




The Hilbert transform of the considered signal
x(t) is defined by an integral transform [Feldman
2011, Wang 2016]:

00 x(T)

Hlz(8)] = Hy[2(t)] = —/ ~of oo

where H1 denotes the conventional integer Hilbert

7-7

transform.



Its extension to the fractional Hilbert transform
is given [Wanf 2016] by the formula:

Hplz(¢)] = cos(pm/2)Holz(¢)]+sin(pr/2)Hy [z ()],

where Holz(t)] = z(t).
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Figure 8. Envelope spectra of acceleration and z
transform from the pump when cavitation occurs, band pass filtering from

1000 Hz to 2000 Hz




Fractional order for synchronization

e R Kengne, R Tchitnga, A Mezatio, A Fomethe, G Litak,
Finite-time synchronization of fractional-order simplest two-
component chaotic oscillators European Physical Journal
B 90, 88, 2017

e Fractional-order two-component oscillator: stability and
network synchronization using a reduced number of con-
trol signals R Kengne, T Robert, SAK Tewa, G Litak, F
Anaclet, C Li, European Physical Journal B 91, 304, 2018



is investigated under consideration of the following mas-

ter systein
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Fig. 6. Time evolution of synchronization errors e(f) =

v €7 + €5 + e; + e for different values of fractional-order g = 1
(blue), ¢ = 0.98 (green), and ¢ = 0.96 (red) when the bias
voltage source is kept at £ = 4 V. It can be noted that
the numerical finite-time of synchronization decreases with the

fractional-order.




Conclusions

e [ he fractional derivative is introduced to describe mul-
tiple relaxation times in viscoelastic material properties.
Usually, fractional derivative modelling reduce the model
degree of freedom. This can lead to some confusion in

states description and/or their identification.

e [ he fractional derivative enables to adjust the best vari-
able to detect the failures in the dynamical structures.
This could be important as many variables, which are ob-
tained in experiments are projected or transformed. Frac-
tional derivation restores the information about the failures

in the dynamical structures.



e An efficient finite-time adaptive controller with fractional
properties was introduced. It was shown that the synchro-
nization of fractional-order systems is faster than that of

integer ones. We also proposed an application of such a

schema to cryptography.



