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Influence of impulse characteristics on realizing high-energy orbits in
hybrid energy harvester

Abstract: Energy harvesters based on non-linear systems are promising devices for extracting
energy from mechanical vibrations. This paper presents a new design of energy harvester con-
sisting of two coupled nonlinear systems; the Duffing oscillator and a system with quasizero
stiffness. A numerical analysis of the dynamics of the harvester is carried out, presenting co-
existing solutions and their energy efficiencies in both chaotic and periodic motion zones. The
root mean squared (RMS) voltage results depend on the dimensionless excitation frequency,
where high-energy orbits are coexisting with low-energy orbits. Therefore, the second part of
the paper focuses on various strategies for jumps between the orbits using impulses. Different
impulse characteristics and their sequences for periodic and chaotic zones are analyzed.
Therefore, a detailed analysis is presented for many strategies using an impulse excitation di-
agram (IED) as a numerical tool for accurately estimating the amplitude of the impulse, its
duration, and the moment of initiation. The probability of achieving a given solution is also
determined. The simulation results show that achieving the most effective orbit with a single
impulse, as well as several impulses, requires similar energy. However, the advantage of the
step-by-step method is the lower energy required to initiate a single impulse which enables
the use of a smaller regulator. This work can be a valuable tool for designing various systems
and strategies for changing the orbit of a solution.

Keywords: multiple solutions, energy efficiency, orbit jump, high-energy orbit, nonlinear dy-
namics, energy harvesting.

Highlights

Hybrid energy harvester with quasizero system is designed.

Different strategies for orbit jump using impulses are proposed and summarized.

A step-by-step method of correcting solutions is proposed.

Coexistence of chaotic and periodic solutions are checked.

Various parameters of quasizero system were analyzed.

1. Introduction

Scientific research related to energy harvesting has been developing since the begin-
ning of the 21st century. Initially, energy harvesters were simple devices designed to re-
cover energy lost through mechanical vibrations, temperature changes, airflow, etc. [1,2].
However, until 2009, they were designed and tested as linear systems where the effective
range of energy recovery was limited to the resonance frequencies of the vibration source.
More than ten years ago researchers [3-5] proposed the introduction of non-linearity into
energy harvesters, leading to them being characterized by a wider frequency range, al-
lowing for effective energy recovery. Consequently, researcher interests have followed
this direction and non-linearities are now obtained primarily using magnets [6-8], elastic
and dissipative elements [9-11], special construction of cantilever beams [12,13], etc. In
most cases, such systems are based on a cantilever beam with an attached piezoelectric,
allowing the mechanical energy of beam vibrations to be converted into electricity
[14,15]. Energy harvesters usually handle small devices and the value of the recovered
energy; however, they should be capable of powering sensors, simple measurement sys-
tems, and transmitting information [16-19]. Such solutions are applicable wherever ac-
cess to electricity is difficult or expensive. Battery power is not preferred due to the need
to replace them.

The most important element of energy harvesting devices is obtaining design solutions
that maximize energy efficiency. The main challenge of this is the implementation of high-
energy orbits [20,21]. For nonlinear multi-stable systems many solutions occur for the



same excitation conditions, especially for low-frequency, high-level excitations. Unfortu-
nately, for zero initial conditions, these systems often deal with vibrations in the range of
low-energy orbits, leading to a reduction in the energy that can be harvested [22]. If the
initial conditions could be controlled (steered) using mechanical or electrical methods to
obtain high-energy orbits regardless of the excitation conditions, then a high energy effi-
ciency of the designed energy harvester would be achieved [7,23,24]. However, regard-
less of the method, a system that allows jumps between orbits also needs energy, but the
key question is how much energy would be required [25,26]. If the harvested energy is
lower than the energy required to change the orbit, the system will not fulfill its task.
Therefore, it is necessary to accurately estimate the amount of required energy and design
an appropriate energy harvester.

Based on scientific research, there are currently two main methods of changing the or-
bit. These are either electrical or mechanical methods consisting of ‘kicking’ the system
via an external force. One of the methods was presented by Sebald et al. He proposed a
technique called fast burst perturbation [27] which consists of a fast voltage burst applied
to the piezoelectric element. Wang presents the load perturbation method [28] based on
electrical load effects, which enabled a several-fold increase in energy harvesting effi-
ciency. A voltage impulse perturbation approach [29] based on negative resistance was
presented by Lan et al. Similar studies and examples of this method are also presented in
other works [28,30]. Mechanical methods, however, are based on an external mechanical
input. Zhou et al. presented an impact-induced method [31] for nonlinear energy harvest-
ers. The possibilities of using buckling level modification are explored within bistable en-
ergy harvesters [23,32,33]. Yan et al. show a low-cost orbit jump method via energy-effi-
cient transient stiffness modulation [26].

Regarding the discussed research results, methods of changing the solution orbit, and
development of high-energy orbits within nonlinear energy harvesters, it can be con-
cluded that they improve energy efficiency, but are often limited to one design. Therefore,
the work in this paper has been divided into two main parts. First, in chapters 2 and 3, a
new example of energy harvester is presented. The design is based on the Duffing oscilla-
tor and the quasizero energy harvester (QZEH). Secondly, presented in sections 3.1 to 3.5,
further research is carried out with a numerical analysis for the possibility of changing
the solution orbit by presenting several strategies for using impulses. For this, a new tool
called Impulse Excitation Diagram (IED) is proposed. The impulse strategies and IEDs
proposed are universal tools that enable the optimization of the duration, initiation point,
and amplitude of the impulse for higher energy orbit jumps, using electrical and mechan-
ical methods.

2. Mathematical model formulation

The tested energy harvesting structure consists of two coupled nonlinear systems: the
Duffing oscillator, and the system with quasizero stiffness, which is similar to the qua-
sizero energy harvester QZEH [24,34]. In the numerical experiments, it was assumed that
the analyzed system is influenced by the external harmonic excitation, y, = Asin(wyt),
coming from the vibrating device, V, where the energy harvesting system is attached using
the VI screws, shown in Fig. 1. The system with quasizero stiffness consists of the spring
and damping elements, cki, ckz, cG, be, and inertial element, mz, which is connected to the
Duffing oscillator, /1, via a flexible beam, I. In the interests of clarity, the quasizero stiff-
ness model is simplified in Figure 1a. It is mapped by the equivalent nonlinear elastic ele-



ment, cz, and dissipative bz, while its detailed structure is presented in Figure 1b. Piezoe-
lectric transducers, 11, which transform mechanical energy into electricity, are glued onto
the flat surfaces of the flexible beam, I, which is attached to the Duffing oscillator via the
IV screw. Due to the deformation of the cantilever beam, a voltage is induced on the pie-
zoelectric electrodes.
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Fig. 1. Tested system: a) schematic diagram of a hybrid energy harvester consisting of a duffing
oscillator and quasizero energy harvester (QZEH), b) quasizero stiffness system - this is a
side view of upper part of Figla. I - flexible beam, II - piezoelectric transducer, Il - duffing
oscillator, IV, VI - screws, V - vibrating device.

During the numerical experiments, a symmetrical structure of connections of qua-
sizero system elastic elements was assumed, attached at points A, B and C to the Duffing
111 type oscillator, shown in Fig.1b. From a mathematical aspect, the energy dissipating
elements bg and be form parallel connections. Therefore, a simplification was made con-
sisting of the introduction of equivalent dissipation elements: bz = bg + b¢. A similar situa-
tion occurs for elastic elements modeling the stiffness of flexible beams cg, and the main
spring, cc. Here, the elastic elements of the energy harvesting system are mapped via lin-
ear mechanical characteristics.

The external dynamic loads, F1 and Fz, which affect the inertia elements of the hybrid
energy harvesting system, reflect the impulse excitation for high-energy orbit jump. The
characteristics of the impulse interactions were described using half of the sinusoidal
function. Therefore, numerical experiments will be carried out, aiming to directly affect
the response of the tested energy harvesting system.

2.1. Identification of the mechanical characteristics of the QZEH system

The potential barrier to systems with quasizero stiffness is defined by the main spring,
cG, and the compensation springs, ck: and ckz, which are related to the inertia elements,
mz. In equilibrium, the axes of the compensation springs are orientated parallel to the
straight line defined by points A and C, shown in Fig. 1b. The equivalent dissipation ele-
ment, bz, present in the energy harvesting system, models the energy losses related to the
deformation of the flexible beam, I, and accounts for the resistances in the articulated
joints of the compensation springs. Based on the adopted schematic diagram in Fig. 1b,
the cause-and-effect relations between the displacement of the inertial element, g, and the
external load, F, were derived. When deriving the static characteristics of the system with



quasizero stiffness, the influence of inertia and dissipation forces is neglected. The exter-
nal load, F, acting on the inertial element, is balanced by the forces induced in the main
spring, cc, and compensation springs whose stiffness coefficients are represented by the
formula ck = ck1 + ckz:

q

— ay>0
,-—a(z) e 0 . (D

In equation (1), Fzo represents the preload of the compensation springs. Appropriate
analytical relationships were derived with respect to the reference system, which begins
at point A in Fig. 1b. The quasizero stiffness system is characterized by a symmetrical con-
figuration, therefore it is sufficient to know the relationship that defines the change in the
length of one compensating element:

AL=‘/a§+q2—\[a_§- (2)

Substituting equation (2) into (1) leads to the equation defining the static characteris-
tics of a system with quasizero stiffness:

S q
F(@) = coq +2 (on ¥ o <ja3 42— Ja§>>2—. 3)
ag +q?

The proper functioning of the system, and ensuring a flat energy potential well, de-
pends on the appropriate selection of the initial stress of the compensation springs, Fzo.
To identify this, equation (3) was differentiated with respect to the generalized coordi-
nate:

F(q) = Fgq + 2Fgysing = cqq + 2(Fy9 + cxAL)

(@) dF(q) N 2e0q2  20° (F20+cK (,/ag +q%— /a_g))
cq) =—F—""=¢g —
dq ag + g2 3
0oT4q ( /ag T qz) ”
2 (P + (Va7 0 = a3))
Jai +q? '

Assuming a zero, or a close to zero stiffness of the quasizero stiffness system, equation

(4) equates to zero, c(q = 0) = z—z = 0 and has zero displacement of the inertial element,

+

q = 0. After considering the above assumptions, the tension of the compensation springs
takes the following form:

2
Cev Qo
Fpo = — . (5)
20 2
The mechanical characteristic describing the relationship between the deflection g,
and the external load, F, is given by the equation:



The relationship defining the potential barrier is obtained by integrating equation (6)
with respect to the generalized coordinate, g:

2
V(q) =JF(q)dq =C2—Z<ao— /aé +q2> : (7)

Equation (7) shows that the characteristics of the potential barrier are influenced by
two parameters: the equivalent stiffness, cz, and the geometric quantity, ao. Based on these
dependencies, graphs were drawn to illustrate the influence of the equivalent stiffness, cz
and the design parameter, ao, on the potential barriers of the system with quasizero stiff-
ness. The characteristics of the potential barrier were illustrated against the Duffing os-
cillator potential barriers (dashed lines), where the well depth was used as the control
parameter. I represents the scaling parameter through which the depth of the potential
barrier well was mapped - introduced in Eq. (8).

2
F(q) = (c + 2¢) (1 - £> q- (6)
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Fig. 2.  The results of numerical calculations showing the influence of the parameters: a) equivalent
stiffness cz, b) geometric quantity ae. " represents the scaling parameter through which the
depth of the potential barrier well was mapped.

The results presented in Fig. 2 show that the increase in the equivalent stiffness coeffi-
cient cz causes the limitation of the zone with a potential close to zero. However, the situ-
ation is the opposite regarding the parameter, as, where increasing its value causes a flat-
tening of the potential well. The identified static characteristics are the basis for quantita-
tive and qualitative computer simulations.

2.2. Dimensionless mathematical model of the energy harvesting system

The kinematic force acts via the parallel connection of the nonlinear elastic element,
Foy = —c1(y1 — ¥o) + c2(¥1 — ¥o)°, with the linear damper, bz, on the inertia element of
the Duffing type oscillator, m:. The differential equations of motion resulting from the for-
mulated phenomenological model, shown in Fig. 1a, take the following form:
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where:

C11 = %, C11 = ch’ and I” represents the scaling parameter through which the
depth of the potential barrier well was mapped.

After introducing new coordinates, g; = y; — ¥y, g2 = Y2 — Y1, and several transfor-
mations, the mathematical model of the hybrid energy harvesting system takes the fol-
lowing form:

1

——— | x, = w?psin(wt) + py,
V1+x,7?

1
jél + 62.7&1 - 633&2 - ]/(xl - ax%) _ﬁ<1 -
X >x2 + Yu = w?psin(wt) + p, — ¥,

(
|
1
{lxz + 515C2 + <1 - —m (9)
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The derived mathematical model is a formal basis for quantitative and qualitative
model research within the field of assessing the efficiency of harvesting energy from vi-
brating mechanical devices. Model tests of the hybrid energy harvesting system were car-
ried out assuming the physical parameters of the formulated phenomenological model,
shown in Table 1.

Table 1. Geometric and physical parameters of the model

Name Symbol Value
Mass of a Duffing-type oscillator mi 0.25 kg
Loading mass of the cantilever beam my 0.02 kg
Duffing-type oscillator losses b 0.35 Nsm!
Cantilever beam losses b 0.02 Nsm’!
Losses in a system with quasizero stiffness b> 0.28 Nsm!
Duffing-type oscillator mechanical characteristic coeffi- ci 144 Nm!

cients c2 3510 Nm?




Equivalent stiffness of the quasizero stiffness system cz 36 = 144 Nm'!

Design dimension of the quasizero stiffness system ao 0.03 m
Load resistance Ro 1.1 MQ
Equivalent capacity of the piezoelectric converter Cp 72 nF
Electromechanical constant of piezoelectric converter kp 3.985:10° N/V

The dimensionless mathematical model and the adopted numerical data constitute the
formal basis for conducting quantitative and qualitative numerical experiments.

3. Numerical calculations results

Examples of diagrams of the effective values of the voltage induced on the piezoelectric
electrodes, for coexisting solutions, are presented in Fig.3. For each value of the dimen-
sionless frequency, o, 500 random initial conditions in a four-dimensional phase space
were investigated. They were chosen within the range of the state variables, x; € [—4,4],
X; € [—4,4], and i = 1,2. Initial model studies, where initial conditions were selected to a
lesser extent due to their variability, did not detect permanent 1T-period solutions char-
acterized by the best energy harvesting efficiency. For all identified diagrams, the
branches corresponding to zero initial conditions are presented in blue within Fig. 3.

Furthermore, diagrams of RMS voltage values were drawn with the assumption that
the steady state occurs after 1000 periods of the excitation signal. This value was chosen
to minimize the impact of transient processes which are subject to earlier or later extinc-
tion, depending on the solution. However, choosing a long lifetime of transient processes
does not always guarantee their extinction because numerical artifacts are still visible, as
shown in the cyan bands. Detailed model studies were carried out assuming the steady
state occurs after 3000 periods of excitation. This showed that the periodic solutions with
high periodicity are unstable and are attracted over time by low-energy orbits with a pe-
riodicity of 1T.
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Fig. 3. Diagrams of RMS values of the induced voltage on piezoelectric electrodes, identified in relation
to the deep wells of the potential barrier characterizing the Duffing-type oscillator. Blue trajec-
tories correspond to zero initial conditions, other colors correspond to different values of ¢z and
p. Chaotic zones are highlighted in yellow and green.

Computer simulations indicate that there are two zones of chaotic solutions in the hy-
brid energy harvesting system, with the first being much narrower. An increase in the
dimensionless amplitude of mechanical vibrations, p, affecting the system, causes an in-
crease in the width of the chaotic response bands and a narrowing of the periodic re-
sponse area between them, as shown in Fig. 3. However, the situation is the opposite in
the case of increasing the equivalent stiffness, cz. A direct comparison of the diagrams
shows that an increase in ¢ causes the branch to shift toward the low frequencies, . Sim-
ultaneously, an increase in the voltage induced on the piezoelectric electrodes is ob-
served. In the low value range of 0.2 < ® < 0.45 (p = 0.2, cz = 144), periodic solutions with
the periodicity of 1T appear, for which the orbits of the Duffing oscillator solutions circle
both potential wells. This behavior is caused by the appearance of an additional branch of
the 1T periodic solution. It is worth noting that at a certain value of ¢z the branch repre-
senting the 3T-periodic solutions is broken. In the examples: p = 0.1, c;=36; and p = 0.2, c;
=72, the vertices of the branches are within the zone, ® € [2.4, 2.8]. The 3T-period branch
for p = 0.1 is broken when the equivalent stiffness of the system with quasizero stiffness
is approximately cz = 43, shown via the cyan diagram.

Regarding the diagrams of the effective values for voltage induced on the piezoelectric
electrodes (p = 0.2), the approximate equivalent stiffness was determined to be cz = 81,
where the branches were broken. Regardless of the dimensionless amplitude of mechan-
ical vibrations affecting the tested energy harvesting system, broken branches of 3T peri-
odic solutions move in opposite directions. The left section moves towards the low values



of ®, while the right section moves towards the high values of ®. Most periodic solutions
with a periodicity of 1T show a low energy harvesting efficiency of urus <5., These solu-
tions usually correspond to zero initial conditions and are located inside the potential well
of the Duffing oscillator. The presence of two different solutions is visible with an increase
in the equivalent stiffness of the quasizero stiffness system.

When the excitation frequency, o, is located before the first zone of chaotic solutions,
the vibrations of the cantilever beam, /, are much higher compared to the vibrations of the
inertial element, /1], shown in Fig. 4a. They are also larger compared to the vibration signal
of the object, where the energy is obtained. Here, the system functions as a multiplier, and
from a theoretical aspect, this property is favorable. However, the efficiency is too low to
be an effective energy harvesting system. Within this band, and for low values of cz>36,
the orbits of the 1T-period solutions coincide regardless of the operating points of the
Duffing oscillator, which are in different potential wells. However, increasing the equiva-
lent stiffness, cz, distorts the ellipsoidal phase trajectory of the Duffing system. This dis-
tortion becomes greater with increasing dimensionless amplitude of mechanical vibra-
tions, which affect the tested energy harvesting system, shown in Fig. 4a. The phase tra-
jectories of the system solutions with quasizero stiffness are plotted in a darkened color,
while the corresponding orbits of the Duffing oscillator are in a brightened color. Poincaré
cross-section points of the system with quasizero stiffness are distinguished by a black
circle (Fig. 4).

An extremely different response is observed for higher values of . For these cases, the
energy harvesting system functions as a vibro-isolator and applies to 1T-periodic solu-
tions generating low voltages on the piezoelectric electrodes, as shown in Fig. 4b. There
is no orbit deformation of the system with quasizero stiffness because there is a very
strong vibration isolation in the system. For higher values of the dimensionless excitation
frequency, o> 2, the effective induced voltage on the piezoelectric electrodes is near zero.
The orbits of the Duffing oscillator solutions do not leave the potential well, while solu-
tions with higher periodicity for the system with quasizero stiffness are excited. Based on
the numerical experiments carried out, it is possible to conclude that we have effective
energy harvesting when the trajectory of the Duffing oscillator runs around the potential
wells.
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Fig. 4. Influence of the equivalent stiffness of an oscillator with quasizero stiffness on the shape of 1T-
periodic orbits. in the range of: a) low frequencies, b) high frequencies

Diagrams of RMS voltage values induced on the piezoelectric electrodes are shown in
Fig. 5. They show the effect of the potential barrier well depth on the solutions and the
geometric structure of the branches. If the potential well depth decreases, then a narrow-
ing of the zones of chaotic solutions is observed. Similar to the graphs presented in Fig. 3,
an increase in the equivalent stiffness, cz, improves the efficiency of energy harvesting
from vibrating devices. Regarding the tested cz weights, the "breaking” of the solution
branches with a periodicity of 3T takes place for lower values of ¢z For shallower wells,
branches representing quasi-periodic, QZ, solutions are excited in the system. In the hy-
brid energy harvesting system, there are branches representing even and odd periodic
solutions. Regardless of the excitation amplitude, p, and the depth of the Duffing oscilla-
tor's potential barrier well, 1T-periodic solutions with low energy efficiency dominate in
the bands before the first chaotic solution zone. For low values of the excitation amplitude,
p, these solutions correspond to zero initial conditions. The focus is on solutions with
higher periodicity when the dimensionless excitation frequency, ®, leaves the second cha-
otic zone.
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Fig. 5. Diagrams of the effective voltage induced on piezoelectric electrodes, which were identified for
the shallow and transient well depths of the potential barrier I, characterizing the Duffing os-
cillator. Blue trajectories correspond to zero initial conditions, while other colors correspond
to different values of c; and T'. Chaotic zones are highlighted in yellow and green.

The results of numerical experiments above indicate that effective energy harvesting
from mechanically vibrating devices takes place for high equivalent stiffness, cz values.
The impact of the dimensionless excitation amplitude, p, and the depth, I, of the Duffing
oscillator's potential barrier on the structure of the diagram was compared in Fig. 6.
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Fig. 6. The results of the model tests showing a) the influence of the dimensionless amplitude, p, b) the
Duffing oscillator’s potential barrier well depth, I'. Colors correspond to different values of p
and .

The results in Fig. 6a show that, irrespective of the dimensionless amplitude, p,
branches with a periodicity of 1T running almost parallel to the frequency axis, ®, do not
change their position. For these cases the increase in p causes the extension of the left
section of the 3T-periodic branch. However, Fig. 6b shows that as the depth of the Duffing



oscillator well decreases, the slope of the diagram branches increases. Graphs of the co-
existing periodic solution orbits are not presented here. They will be presented later when
assessing the disturbing impulse for the possibility of a phase trajectory correction.

3.1.Single impulse correction of the solution

The basis for the numerical experiments included in this section is the 'Impulse Excita-
tion Diagram’ (IED). Generally, the algorithm is drawn based on the identified Poincaré
points, which are compared with the points of coexisting solutions. Here, during computer
simulations, it was assumed a priori that the disturbing impulse is initiated the moment
the hybrid energy harvesting system is in steady-state motion. From the beginning of the
computer simulation, T = 0, until the dimensionless time reaches 1o, only the mechanical
vibrations of the object act on the tested system. In the steady state condition, when the
excited transient processes are extinguished, there is a stable solution that corresponds
to zero initial conditions x;(0) = 0, x,(0) = 0,x,(0) = 0,%,(0) = 0,u(0) = 0. Only at to
is the disturbing impulse initiated. The additional dynamic action causes the operating
point to be thrown out of the stable orbit. During the visualization of the solution correc-
tion, all resulting orbits (corrected) were drawn in red. The phase trajectory correspond-
ing to the transition processes is shown in gray. Over time, these trajectories tend to be
one of the permanent periodic or chaotic solutions. The targeted orbit is highlighted in
blue.

To illustrate the behavior of phase flow during the excitation impulse, its fragments
have been distinguished by dashed curves in black and brown. Poincaré points of coexist-
ing solutions are mapped with markers where the colors correspond to the colors of the
permanent responses of the system. The moments in which the impulse initiation takes
place are marked with black circles. The same process was applied to the moment of stop-
ping the impulse and the appropriate point on the phase plane was marked with a white
marker. For model tests results presented in Figs 7 and 8, IED diagrams were identified
with respect to time windows where the width is equal to one excitation signal period.

For the IED diagrams, the time series of mechanical vibrations (navy blue) and the ex-
citation impulse (blue and dark gray) are plotted. The colors of the orbits of the coexisting
periodic solutions are directly correlated with the colors of the IED diagram - it shows the
moments of time in which it is possible to achieve a solution of a given color. The sum of
the time moments of a given color versus the total time on the IED defines the probability
of achieving a given solution. Only the bands, corresponding to the initiation of the solu-
tion's orbits in orange, are highlighted in yellow. This substitution ensured an appropriate
contrast for the readability of the IED diagram. This approach was adopted for the presen-
tation of all numerical experiment results included in the paper.

Theoretically, the solution orbit correction can be achieved in three ways including via
a direct disturbance of the vibration signal. This approach was considered in the publica-
tion by Margielewicz et al. [24] and is not investigated in this paper. The other two options
are direct force impulses influencing the inertial elements of the Duffing oscillator, p1, and
the system with quasizero stiffness, pz. During the numerical experiments, the amplitudes
of the excitation impulses influencing individual oscillators were assumed to be the same.
The times at which the impulse is initiated, to, were calculated for 700 points in the time
window. For each band, the probability of reaching the individual orbits was estimated
based on the IED.

The dynamics of the system are of little interest for the low-value band of the dimen-
sionless excitation frequency, ®, which is limited by the first zone of chaotic solutions.



Similarly, this applies to the small values of the dimensionless amplitude, p <0.2, of me-
chanical vibrations affecting the hybrid energy harvesting system. This is due to the coex-
istence of solutions with Duffing oscillator orbits located inside the potential well. For
such orbits, correcting the solution is not effective because the initiated impulse will cause
the solution to jump from one well to the other without a noticeable qualitative change in
voltage induced on the piezoelectric electrodes. Large orbits in these zones were identi-
fied for p = 0.2 and cz = 144 for the system with quasizero stiffness, shown in Fig. 3.

The coexistence of the orbits covering both wells of the Duffing oscillator is shown in
Fig. 7a. There are three permanent periodic solutions with a periodicity of 1T. The energy
harvesting efficiency in two of them is low because their orbits are located inside one of
the potential wells. Therefore, the effective voltage induced on the piezoelectric elec-
trodes reaches a value of circa 2.6V. The orbit in orange corresponds to zero initial condi-
tions.

If the impulse acts on the inertial element of the Duffing oscillator, then the bands rep-
resented in yellow dominate in the IED diagram, shown in Fig. 7b. Initiating an impulse
within this band and allowing the transient processes to decay, the phase flow is attracted
to the targeted orbit. However, in the case of an external impulse with an amplitude of p1
=1.5(20.25N excitation force) and a width of 71 = 0.25, only 3% of the identified moments,
0, achieve the orbit with the highest energy harvesting efficiency, shown in red. The dia-
gram showing the time moments of the impulse initiation affecting the oscillator with
quasizero stiffness and the solution correcting phase trajectory is shown in Figure 7f. Both
diagrams are dominated by the yellow bands leading to the orange orbit in Fig. 7b, which
corresponds to zero initial conditions. Additionally, the red bands leading to the large or-
bit are very narrow. For the impulse influence on the Duffing oscillator, pz = 18.75, corre-
sponding to a force of 20.25N, the probability of obtaining a solution given by a large orbit
is circa 3%, as shown in Fig. 7b. However, when impulse acts on an oscillator with qua-
sizero stiffness, the probability is circa 4.86%, shown in Fig. 7f.

The numerical experiments show that increasing the amplitude of the disturbing im-
pulse has a beneficial effect on the structure of the diagram. This is due to the width of the
bands increasing, which is synonymous with a greater probability of achieving a large or-
bit. For example, doubling the p; impulse amplitude increases the probability of reaching
a large orbit by a factor of ten, as shown in Fig. 7d and Fig. 7e. However, this takes place
when the disturbing impulse affects the Duffing-type oscillator. When an impulse with the
same characteristics is applied to a system with quasizero stiffness, there is over a four-
teen-fold increase in the bandwidth, leading to a large orbit, shown in Fig. 7h and Fig. 7i.
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Analogous tests were performed regarding the parameter t1, defining the impulse
width. The computer simulation results indicate that the impulse width has a small influ-
ence on the broadening of the IED diagram bands, shown in Fig. 8.
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impulse, the probability of achieving a solution, and the moment of impulse initiation are pre-
sented: pz - impulse amplitude affecting quasizero system, p; - impulse amplitude affecting
Duffing oscillator. Time series of mechanical vibrations are in navy blue and the excitation im-
pulse is in blue and dark gray.



The numerical experiment results show the possibility of defining the impulse charac-
teristics to achieve a given solution.

3.2.Technical capabilities of solution corrections

The numerical experiments results presented so far explore the coexisting solutions
with orbits that are within proximity. However, when dealing with several coexisting or-
bits where distances between the output and targeted orbits are large, then for inertial
elements it is necessary to initiate a large amplitude impulse. Technically, the amplitude
of the impulse is limited, therefore numerical experiments were carried out where the
system was influenced by characteristics of the disturbing load. The main aim of this re-
search was to reduce the amplitude of the impulses. However, at very large distances be-
tween the output and the targeted solutions, generating a sufficiently large amplitude may
turn out to be impossible.

Results are plotted in Fig. 9, showing cases where the disturbance affects a Duffing os-
cillator. These conclusions are made due to the legibility of the charts. For impulse inter-
actions in a system with quasizero stiffness, the disrupted trajectory is "launched" into
further regions of the phase space. Additionally, the same values were assumed for the
amplitudes, p1, and widths, 11, of the impulses. The time delay, T2, measured between the
end of the first impulse and the beginning of the second impulse, was assumed to be twice
the impulse width, t1.

Appropriate model studies were carried out relating to five coexisting stable periodic
solutions. Three of them are 1T periodic solutions, while the other two have a 5T and 7T
periodicity. For orbits observed in the phase plane of the Duffing-type oscillator, two 1T-
periodic responses are located inside the potential well and have near-zero energy har-
vesting capacity. This low efficiency of energy recovery is directly related to the high value
of the dimensionless excitation frequency, ®. Due to high values of ®, the system functions
as a vibration isolator.

The 1T-periodic solution highlighted in red in Fig. 9a shows the best energy harvesting
efficiency, urms ¥ 35.4V. The 5T and 7T periodic responses are in the zone between the
large and small orbits. Based on the identified impulse excitation diagrames, it can be con-
cluded that the 5T and 7T periodic solutions have a relatively low probability of achieving
a similar solution. Fig. 9c shows that the probability of achieving the 5T-period solution
reaches the level of 11.14%. For the 7T-periodic solution, this probability is smaller, with
a maximum value of 3.57%.
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The impulse excitation diagrams shown in Fig. 9 illustrate the influence of the external
dynamic interaction on the ability to reach the targeted orbit. When designing a system
correcting the orbit of the solution, it is important to know that the amplitude of the dis-
turbing impulse has a finite value. As it increases, the necessary energy to initiate an im-
pulse also increases. The term "necessary energy" means the total force that must be ap-
plied to achieve the desired orbit. Considering the limited energy efficiency of the im-
pulse-initiating system, numerical experiments were carried out while various dynamic
characteristics disturbing the output orbit were tested.

When the system is affected by a single impulse, the targeted solution can be achieved
when the impulse width, 7z = 0.25, and its amplitude, p1, reaches a dimensionless value of
approximately 30, which corresponds to circa 810N. Smaller amplitudes of the disturbing
impulse make it impossible to obtain a solution with the best energy efficiency. Based on



the identified diagram of excitations in Fig. 9b, it is possible to estimate the probability of
achieving solutions. Initiating a large load of approximately 800N, will likely not be
achievable from an engineering point of view by using a small forcing system. Therefore,
the orbit was disturbed by a load acting simultaneously on Duffing oscillator and qua-
sizero stiffness system, shown in Fig. 9c. However, in principle a satisfactory result cannot
be achieved either because the actual amplitude value of each impulse is 675N. Despite
the probability of reducing the amplitude of disturbing impulses by approximately 20%,
the probability of achieving the most energy-efficient solution has been reduced more
than three times. With this characteristic of a solution disturbance, the impulses acting on
the Duffing-type oscillator, as well as the quasizero stiffness system, should have opposite
directions. For impulse vectors with the same direction, much worse effects of orbit cor-
rection are obtained relating to the disturbance, with a single impulse affecting any oscil-
lator.

Much better results are obtained if the Duffing-type oscillator is influenced by a se-
quence consisting of two impulses. Here, the actual amplitude of the impulses is limited
to 405N, which is equivalent to its two-fold limitation. The probability of reaching the or-
bit with the best energy harvesting efficiency is comparable at 29.57%, shown in Fig. 9d.

Fig.9b shows that for the third impulse in the disturbing sequence the real values of the
impulse amplitudes were three times smaller and circa 270N. Therefore, the probability
of reaching a large orbit did not change significantly. The results of the model tests show
that the most effective method of correcting the solution is influencing the inertial ele-
ments of the energy harvesting system with a series of excitation impulses. The numerical
experiment results show that the total force of a single impulse is equal to the sum of
individual impulses that should be allocated to change the solution regarding impulse se-
quences. This value is the same as for interactions with a single impulse, however, the
impulse-initiating system may be much smaller which will be a technological advantage.

3.3. Coexistence of high-energy and low-energy orbits

For the coexistence of high and low orbits, the correction of the solution, with minimal
force initiating disturbing impulses, is possible through a series of impulses. Considering
low orbits, the effective voltage induced on the piezoelectric electrodes is urus <5V, while
for high and very high orbits it is urms>20V. At this point, the boundary effective voltages
are a subjective assessment of the authors. This paper copes with solutions in almost
every identified diagram of coexisting solutions. Correcting the response for these solu-
tions via the impulse sequence is reasonable as the amplitude of a single impulse may turn
out to be physically unrealistic. However, for assessing the applied strategy of modifying
the solution orbit, the results of computer simulations show that the IED identified for a
single impulse is also included. The results of the numerical experiments are presented in
the graphs shown in Fig. 10.
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If the energy harvesting system with shallow potential barrier wells, I' = 5, is affected
by mechanical vibrations with an amplitude of p = 0.1 and a frequency of ® = 3, then three
coexisting solutions with the periodicity of 1T are possible. Two of them are located inside
the Duffing oscillator's potential barrier well, shown in Fig. 10a. These solutions are char-
acterized by a near-zero efficiency of harvesting energy (urms~0.034V). However, one so-
lution located in the left well is the basic solution, which is a solution that corresponds to
zero initial conditions. The third solution is characterized by the highest energy recovery
efficiency given by a large orbit, where a voltage is induced on the piezoelectric electrodes
with an effective value of urms ~40V. The orbit correction via a single impulse can be
achieved if the dimensionless amplitude of the p: impulse reaches a value of circa 42.5
(574N). With a given characteristic of the impulse, the probability of achieving the desired
solution is circa 11.14%, shown in Fig. 10b. The amplitude of a single impulse is smaller
than it was in the example presented in Fig. 10b. In this example, the distance between



the initial orbit and the target orbit is greater, yet the amplitude of the impulse is smaller.
This is due to the value of the impulse amplitude being mainly determined by the equiva-
lent stiffness of the system with quasizero stiffness.

A similar probability of 10.86% was recorded when the initial orbit was influenced by
a sequence of two impulses of the same amplitude and width, shown in Fig. 10c. For this
diagram, only one of them is visible, while the other is outside the scope of identification.
The lack of a second impulse in the diagram is mainly due to the depiction of the moments
of time leading to the other two solutions, and the location of the impulse initiation band
located in the final range. Similar findings are made for the interaction with sequences
consisting of three and four impulses. The initiation of two impulses on the Duffing oscil-
lator made it possible to limit the amplitude of the impulses to the level of p: = 21.25,
which corresponds to circa 287N. The analysis of the trajectory during the impulses
shows that as they move away from the beginning of the coordinate system of the phase
plane, the trajectories are deformed. This is caused by the areas of attraction near where
the impulses stop. Along with increasing the number of impulses, it is possible to limit
their amplitudes, however, this could reduce the probability of reaching the set target or-
bit. For three impulses, this probability reaches 8.14%, with a dimensionless amplitude
of p1 = 15.25, which corresponds to circa 206N, as shown in Fig. 10d.

The results of model studies presented so far suggest that the only panacea for correct-
ing the solution in the coexistence of large and small orbits is to initiate sequences com-
posed of multiple impulses. However, this was shown to be incorrect. In the example pre-
sented in Fig. 10e, the sequence of four impulses with a width of 7z = 0.25, and a delay of
72 = 211, did not provide satisfactory results. Due to a larger number of impulses, a situa-
tion may arise where the targeted trajectory is reached by one of the preceding impulses
and each following impulse will knock the target orbit out of its steady state. Therefore,
there are no bands on the IED leading to the target orbit. In these cases, both the impulse
width, 77, and the delay, 7z, can be reduced. Influencing the energy harvesting system
through a series of four impulses provided satisfactory results. However, it was shown
that it was necessary to reduce 7: by a factor of circa 2. With these impulse sequence char-
acteristics, the probability of correcting the solution was approximately 2.57%.

Technically, the examples in the graphs shown in Fig. 10d and Fig. 10e show that the
orbits corrected via a series of three and four impulses are pointless. This is due to the
total energy required to correct the orbit being greater than the energy required to gen-
erate a single impulse. However, it is possible to further limit the amplitude of the im-
pulses. Nevertheless, the consequences of this action are an increasingly narrower band
of the desired orbit and a lower probability of successfully correcting the initial solution.

3.4. Coexistence of chaotic and periodic solutions

In nonlinear dynamical systems, it is common to have two coexisting chaotic and peri-
odic solutions with a periodicity of 1T, shown in Fig. 11a. The periodic solution is charac-
terized by a higher energy harvesting efficiency because the effective voltage on the pie-
zoelectric electrodes is observed and reaches urms #30.42V. The zero initial conditions
corresponding to the equilibrium position led to a chaotic solution with an energy har-
vesting efficiency almost twice as low as urms#30.42V, relating to the periodic response.
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Fig. 11. Various characteristics of the impulses for the coexistence of chaotic and periodic solutions.
Model test results for p = 0.2, o= 1.6, '=1, and c;= 72

The identified IED diagrams were plotted for the Duffing-type oscillator being affected
by an external dynamic excitation impulse of the lowest force required to enable the tar-
get orbit to be reached. Therefore, the probabilities of achieving the desired solution are
less than 0.6%, as shown in Fig. 11b and Fig. 11c. For a disturbance with a single impulse,
or a sequence of impulses, the probability increases over ten-fold. This comes from the
algorithm calculating the excitation diagrams because the probability of achieving the so-
lution is estimated via the number of moments, to, examined while plotting the diagrams.
However, optimizing the impulse characteristics due to its minimum amplitude is not ad-
visable. This is due to the impulse characteristic being determined by the dynamics of the
impulse-initiating system.

The initiating system should be characterized by a slight inertia and the electronics
responsible for its control are important. With two coexisting solutions, where one is cha-
otic, excitation impulses should be initiated at the time to, when the distance between the



chaotic trajectory and the target orbit is the minimum. These cases are not included be-
cause they occur at higher dimensionless amplitudes of the disturbing impulses. However,
this hypothesis is not confirmed by the obtained results of computer simulations. This is
the case with a single disturbance in Fig. 11c and a sequence of two impulses from Fig.
11e. As seen in the examples already tested, shown in Fig. 11d, increasing the number of
disturbing impulses enables their amplitude to be nearly half. However, this action is fu-
tile since the total amount of energy devoted to correcting the solution is greater than the
energy used to initiate a single impulse, as shown in Fig. 11b. As with the impulse excita-
tion diagrams, enlargements of the phase plane are presented to visualize the trajectory
during the impulse interaction.

3.5. A step-by-step method of correcting solutions

This section presents an alternative method showing it is possible to achieve the high-
est energy efficiency solution. This method corrects the target orbit in several stages. At
each stage, an orbit with a higher energy efficiency should be achieved. Theoretically, the
total energy devoted to initiating impulses should be smaller than correcting the solution
with a single impulse.

Detailed modeling studies were performed for the coexistence of six solutions. Three
of them are characterized by 1T-periodic orbits, but for one of them, shown in red in Fig.
12a, the effective voltage induced on the piezoelectric electrodes reaches the level of urms
~ 52.2V. The solutions located inside the Duffing oscillator well show close to no energy
harvesting efficiency. Based on the analysis of the orbits, it can be concluded that the pe-
riodicity of the solutions decreases as the voltage induced on the piezoelectric electrodes
increases. Of the orbits revolving around both potential wells of the Duffing oscillator, the
lowest energy harvesting efficiency is found in two 5T-periodic solutions of urms= 13.15V.
The 3T-periodic solution shows a much higher efficiency because the RMS voltage on the
piezoelectric electrodes reaches urms~ 32.84V.
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The total energy required to reach the target orbit by the step-by-step method was
compared to directly correcting the solution, shown in Fig. 12b. For the direct method, it
is necessary to initiate an impulse with a dimensionless amplitude of p: = 29, which is
circa 1560N. In the step-by-step approach, the first step in "reaching" the desired solution
is being able to achieve one of the two 5T-periodic solutions. The choice of one depends
on the structure of the band distribution in the impulse excitation diagram. In Fig. 12c,
when a single impulse with a dimensionless amplitude of p1 = 3.1 is initiated on the Duff-
ing oscillator, only one of the solutions with a periodicity of 5T is achievable with a prob-
ability of 4.43%. In the second stage, a jump to the orbit of the 3T-periodic solution is
made. Here, the minimum amplitude of a single disturbing impulse is p: = 3.9, shown in
Fig. 12d.

The similar values of the impulse amplitudes necessary to correct the orbit in both
stages can be explained by the similar difference in the effective voltages of the initial and
target solutions. The results of computer simulations obtained in both stages suggest that



the large 1T-periodic orbit will be reached at a similar impulse amplitude. However, this
does not take place because the simulations indicate that near the 3T-periodic orbit there
are areas of attraction leading to other coexisting solutions. Leaving the orbit requires
initiating an impulse with a dimensionless amplitude of p: = 25, as shown in Fig. 12e. This
excessive value should be attributed to the strong influence of the vector field, which
causes the trajectory to stretch over the duration of the impulse. The results of computer
simulations show that achieving the orbit with the highest energy generation efficiency
should be obtained through a single impulse.
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Fig. 13. A step-by-step method of correcting solutions with a sequence of two impulses. Model test re-
sultsforp=0.1, »=1.8, '=5, and ¢c;= 144

Similar tests were carried out where the correction of the solution is performed with
the step-by-step method and a sequence of two impulses, as shown in Fig. 13. Here it is
necessary to increase the amplitude by many factors in the third stage of correcting the
solution. Fig. 13 shows that the energy needed for changing the orbit of the solution is at
a similar level to the interaction with a single impulse.

4. Summary and final conclusions

Based on the model tests performed, it is possible to formulate the following conclu-
sions:



e Ifthe system is affected by mechanical vibrations with a nondimensional am-
plitude of p < 0.1, then with respect to the energy harvesting efficiency, the
equivalent stiffness of the oscillator with quasizero stiffness should take
large values. For p > 0.1, it is advisable to increase the equivalent stiffness.

o The probability of reaching the desired orbit can be increased by using a
larger amplitude and duration of disturbing impulses.

e The amplitude of the impulses disturbing the stable orbit is determined by
the equivalent stiffness of the oscillator with quasizero stiffness. Therefore,
when designing the energy harvesting system, it is necessary to ensure the
lowest possible value of the ¢z parameter.

e Not all solutions with the highest efficiency of energy harvesting can be
achieved due to the technical limitations of the system initiating the impulse.

e The step-by-step method is a strong alternative to the typical methods based
on one or more impulses. It is important to choose the time of the impulses
and the time between them. Optimization of these parameters enables a
more effective orbit change with the use of a smaller impulse excitation sys-
tem. The amount of energy required to change the orbit is comparable to a
single-impulse excitation system. A major advantage is a much smaller con-
struction for the step-by-step system.
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