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Influence of the potential barrier switching frequency on the effective-

ness of energy harvesting 

 

Abstract: Dynamical systems for kinetic energy harvesting have recently been designed that use nonlinear mechanical 

resonators and corresponding transducers to create electrical output. Nonlinearities are important for providing a 

broadband input frequency efficiency, which is necessary to ensure that the output voltage is at a satisfactory level in 

the case of a variable ambient vibration source. In this paper, we analyze the dynamics of such a system with the addi-

tional possibility of a switching potential barrier in the nonlinear resonator. In order to improve the effectiveness of the 

energy harvester, we numerically test the possibility of using abrupt changes in the system parameters. We analyze the 

voltage output for various frequencies of both the harmonic excitations and the potential barrier switching. In a range 

that includes low and high switching frequencies of potentials, the periodic solutions dominate in the bifurcation dia-

grams. With regard to the large switching frequency, the effective values of the voltage at the piezoelectric electrodes 

are significantly reduced. The highest effective values of the voltage that are induced at the piezoelectric electrodes are 

observed when the chaotic solutions appear due to their specific ability to pass the potential barrier for relatively small 

excitation. The results also show that mechanical damping with high-enough magnitudes minimize the influence of the 

transient states caused by the switching potentials.  

 

Highlights:  

A new way of the potential function dynamic change in EH was proposed 

The TEH and BEH systems were combined by using non-smooth dynamics 

EH effectiveness analysis was made for chaotic and periodic motion zones 

Influence of the frequency and amplitude on the dynamics of the system was checked 

Keywords: energy harvesting, chaotic vibrations, switching potential, non-smooth dynamics 

 

1. Introduction 

Small size vibration energy harvesters that transform ambient vibration energy to elec-

trical power were proposed, in terms of linear devices, a significant amount of time ago 

[1,2]. Considering the density of energy, the piezoelectric transducers were optimized for 

their size between one to tens of centimeters [3]. However, the variation in the ambient 

conditions cause such a linear device to operate outside of resonance, which leads to a 



3 
 

considerable reduction in the power output [4]. The most popular way to increase this 

output is to apply nonlinear effects to the resonator. In such a system, the frequency 

broadband effects were observed [5–7]. One of the frequency amplitude diagrams, which 

they are related to, is modified in the region of the resonance and there is also the appear-

ance of some new classes of resonances in the form of rational fractions or multipliers of 

the linearized system natural frequency [8–11]. The additional effects are based on the 

multiple solutions, which depends on the initial conditions that are very common in the 

nonlinear systems and the appearance of non-periodic (chaotic) solutions [12,13]. The 

nonlinear potential could be modeled by springs [14–16] and magnets [17,18]. For the 

second option, the positions and orientations of the magnets are very important factors 

and lead to single or multiple potential wells. 

Typical kinetic energy harvesters for obtaining energy from vibrations are usually con-

structed from a housing in which a cantilever beam is mounted, and a piezoelectric trans-

ducer is glued on it [19–21]. Systems with several potential wells were designed to better 

use the possibilities of obtaining energy from non-linear systems. And so, systems with 

bistable (Bistable Energy Harvesters BEH), tristable (TEH) and even quadstable (QEH) 

and pentastable (PEH) characteristics are used [22–25]. Many types of such multistable 

systems have been studied both theoretically and in laboratory experiments. The bistable 

system was tested e.g. in the work of Derakhshani et al. [26] where parameters including 

vibrational motion, output voltage, and frequency response were analyzed both theoreti-

cally and experimentally under different excitation conditions. Similar tests were per-

formed for different designs [27–29]. However, the greatest attention of researchers so 

far has focused on TEH systems, which have been widely investigated [30–32]. Litak et al. 

presented the results, focused on identifying multiple solutions, of numerical simulations 

of a non-linear tristable system for harvesting energy based on permanent magnets [33]. 
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Undoubtedly, the amount of recovered energy and the effectiveness of energy harvesters 

still pose a challenge [18].  

Zhou et al. [34] modified the typical design solution of TEH by changing the inclination 

angle of two external magnets, so that the ability to change the angle of rotation enabled 

the improvement of energy efficiency. Such a design change made it possible to obtain 

various shapes of the potential function. Constructions with moving magnets have also 

been featured in other works. Xinxin et al. [35] proposed an energy harvester built of a 

piezoelectric cantilever beam with a tip magnet and a movable magnet connected by a 

spring to the housing, which broadened operating bandwidth and improved harvesting 

power. Zhou et al. [36] had the same goal when he introduced a bi-stable energy harvester 

based on two flexible beams with a variable potential energy function. Changing the posi-

tion of magnets to change the potential function has also been proposed in other works . 

In all cases, the variable function was intended to improve energy efficiency [18,37,38]. 

On the other hand, at the vicinity of the critical excitation amplitude, competing multiple 

solution can lead to chaotic response accompanied by passing through the potential bar-

rier [13]. The appearance of chaotic and transient chaotic solutions could be more im-

portant for additional parametric excitation leading to variable potential barriers. Such 

variability represent additional way of system excitations and simultaneously provide 

more solutions. In this context identification of specific solutions could be more important 

[39]. In this work we consider an important case of simultaneous inertial and parametric 

excitations. All these studies motivated us to propose a design solution based on non-

smooth dynamics – abrupt change of state of the potential function as for switches, im-

pacts etc. 

In the present paper, we investigate the effects of potential switches during the har-

vesting work. We also analyze the voltage output for various frequencies of both the har-

monic excitations and the potential barrier switching for BEH, TEH and system with non-
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smooth dynamics. Diagrams of the RMS values of the voltage induced at the piezoelectric 

electrodes are compared to the corresponding bifurcation diagrams. To identify particu-

lar solutions, we used the phase portraits, Poincaré maps, and Fourier spectra. In Section 

3 we present the results of the influence of parameters like: the excitation amplitude, the 

sequence of potential barriers switching and its frequency on the dynamics of the system. 

Finally, the solutions are classified by the corresponding average voltage output. 

 

2. Mathematical model formulation 

The subject of the model tests presented in this paper is an energy harvesting system 

with a cyclically switched potential barrier (Fig. 1). Here, the tested structure is composed 

of a flexible cantilever beam I, which is fixed in a nondeformable body III and attached via 

bolts IV to the vibrating housing of the object. Under the influence of the mechanical vi-

brations described by the harmonic function 𝑞1 = 𝐴𝑠𝑖𝑛(𝜔𝑊𝑡), beam I is precipitated from 

the equilibrium position. As a result, a voltage is induced on the piezoelectric electrodes 

II. The tested energy harvesting system has the ability to assume dynamic states, which 

are mapped by two potential barriers. At a given moment in time, the operating point of 

the system is mapped with the potential of one barrier. The subsystem consists of a non-

deformable V cylinder with permanent magnets mounted onto its external surfaces, 

which are responsible for the cyclical change of the nonlinear characteristics. To minimize 

the impact of the magnetic fields, the inside of the cylinder is filled with VI material, whose 

task is to separate the magnetic fields that are generated by permanent magnets. The cy-

clical change in the angular orientation of the V cylinder causes the potential barrier to be 

mapped with either a two-well (Fig. 1b) or three-well (Fig. 1c) characteristics. 

The influence of inertia and resistance to the movement of the V cylinder is negligible, 

meaning that the potential barrier can be switched over a very short period of time. From 

a theoretical point-of-view, the simplest mathematical description of the switching 
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potential barriers is to map it through a rectangular time sequence. We realize that this is 

a far-reaching idealization of the dynamics of the switching circuit. However, adopting 

this simplification provides new qualitative and quantitative information. It is important 

to note that the technical solution of the switching system is not discussed in this paper. 

Idealized characteristics that reflect the shape of the potential, and its influence, were 

mapped for any moment in time by means of cyclograms. The color of the cyclogram 

(Fig.1) is directly correlated with the color of the potential barrier. The times ti, high-

lighted in the cyclograms, define the change in angular orientation of the V cylinder. 

 

 

Fig. 1. a) Schematic diagram of the energy harvesting system with cyclically switched potential barrier. 

b), c) certain configurations of the magnets and the corresponding potential barriers. 

 

The permanent magnets mounted onto the cylinder were selected in such a way that 

the minimums of the two-well barrier (Fig. 1b) coincide with the local maximums of the 

barrier, which were initiated by the two permanent magnets (Fig. 1c). Here, the 
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mechanical characteristics reflecting the stiffness of an elastic cantilever beam is included 

in the modeling functions of the cyclically changing potentials. Based on the formulated 

phenomenological model, the differential equations of motion were derived, which con-

stitute the formal basis for conducting the quantitative and qualitative numerical experi-

ments. These are written as: 

 

{
 

 
𝑑2𝑦

𝑑𝑡2
+
𝑏𝐵
𝑚

𝑑𝑦

𝑑𝑡
+ (𝑐12𝑦
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𝐹𝑆1
𝑚
+ (𝑐23𝑦
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𝑚
+
𝑘𝑃
𝑚
𝑢 = −

𝑑2𝑞1
𝑑𝑡2

,

𝑑𝑢

𝑑𝑡
+

𝑢

𝐶𝑃𝑅𝑍
−
𝑘𝑃
𝐶𝑃

𝑑𝑦

𝑑𝑡
= 0.

 (1) 

 

Table 1 describes each coefficient of Eq. 1, furthermore, the variable y represents the 

difference in the displacements of the movable magnet mounted at the free end of the 

flexible cantilever beam q2; the kinematic excitation is caused by the vibrations of the ob-

ject body q1 from which the energy is harvested. The values FS1 and FS2 model the potential 

barrier of the switching circuit, and their time characteristics are described with time se-

quences that pulsate from zero. From a mathematical point-of-view, the data control func-

tions are algebraic equations, and their graphical images are plotted in graphs (Fig. 1), so 

that: 

𝐹𝑆1 =
1

2
+
1

2
𝑠𝑔𝑛[𝑠𝑖𝑛(𝜔𝑃𝑡)], 𝐹𝑆2 =

1

2
+
1

2
𝑠𝑔𝑛[𝑠𝑖𝑛(𝜔𝑃𝑡 + 𝜋)] . (2) 

 

From a theoretical point of view, the characteristics that define the potential barrier 

can be identified through experimental research. Such an approach is efficient and effec-

tive, thanks to which reliable measurement data is obtained, which is necessary to carry 

out numerical experiments [32,40]. An alternative approach is theoretical considerations 

based on the laws and principles of mechanics and electrical engineering. The effects of 

such analyzes significantly depend on the assumed simplifications and the adopted 
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idealization of the research object [36]. Much better identification results are achieved 

using the finite element method (FEM)[41,42]. At this point, it is worth mentioning that 

the results obtained by the finite element method allow graphically depicting magnetic 

field lines that are invisible to the naked eye during laboratory tests. Analysis of the mag-

netic field lines makes it possible to estimate the scale of interaction between permanent 

magnets. Figure 2 show exemplary graphical images of the distribution of magnetic field 

lines between the magnet loading the free end of the flexible cantilever beam and the mag-

nets fixed in the cyclically rotating V-frame. The presented exemplary results of numerical 

experiments illustrate the distribution of magnetic field lines for various magnet configu-

ration. 

a) b) 

 

c) d) 
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Fig. 2. Examples of magnetic flux lines (magnets interaction) for extreme magnet positions – sample 

data obtained by FEM, a), b) – bistable potential well, c), d) – tristable potential well. Simulation 

prepared in Finite Element Method Magnetics software 

 

When conducting the numerical experiments, the control functions can be replaced 

with the If conditional. Nevertheless, it takes longer for the computer simulations to run 

because the conditional statement must be checked during each iteration. In the potential 

switching method that is to be proposed, this will not be necessary because we rely on 

continuous trigonometric functions. These functions take the values 0, when the potential 

is absent, and 1 for cases when the potential barrier is actively affecting the energy har-

vesting system. The parameter 𝜔𝑃, on the other hand, is responsible for the switching fre-

quency of the potential barriers. The electric circuit factors represent, respectively, the 

constant kP and piezoelectric capacity CP. The RZ parameter corresponds to the equivalent 

internal resistance of the piezoelectric and the external electrical circuit: 

 

{
 
 

 
 𝑥̈ + 𝛿𝑥̇ + 𝜇(γ𝑥5 − β𝑥3 + 𝑥) (

1

2
+
1

2
𝑠𝑔𝑛[𝑠𝑖𝑛(𝜔𝑆𝜏 + 𝜋)]) ,

+(𝛼𝑥3 − 𝑥) (
1

2
+
1

2
𝑠𝑔𝑛[𝑠𝑖𝑛(𝜔𝑆𝜏)]) + 𝜃𝑢 = 𝜔

2𝑝𝑠𝑖𝑛(𝜔𝜏)

𝑢̇ + 𝜎 − 𝜗𝑥̇ = 0,

 (3) 

where 

𝜇 =
𝑐21
𝑐11

, 𝛿 =
𝑏𝐵
𝑚𝜔0

, 𝛼 =
𝑎0
2𝑐12
𝑐11

, β =
𝑎0
2𝑐22
𝑐21

, γ =
𝑎0
4𝑐23
𝑐21

, 𝜃 =
𝑘𝑃

𝑚𝑎0𝜔0
2 ,

𝜗 =
𝑘𝑃𝑎0
𝐶𝑃

, 𝜎 =
1

𝜔0𝐶𝑃𝑅𝑍
, 𝜔0

2 =
𝑐11
𝑚
, 𝜔 =

𝜔𝑊
𝜔0

, 𝜔𝑆 =
𝜔𝑃
𝜔0

,

𝑥 =
𝑦

𝑎0
, 𝑝 =

𝐴

𝑎0
, 𝜏 = 𝜔0𝑡.

 

 

Using such a formulated mathematical model for the energy harvesting system with 

switched potential barriers, it was possible to perform the model tests. 
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3. Model test results and discussion 

 

Numerical experiments, which map the dynamics of the energy harvesting system with 

switched potentials, were carried out with reference to the numerical data summarized 

in Table 1.  

 

Table 1. Geometric and physical parameters of the model. 

Name Symbol Value 

Inertial element (mass) loading the beam m 0.03 kg 

Energy losses in a mechanical system 𝛿 0.138 Nsm-1 

Parameters defining the potential barriers 

ci1  20 Nm-1 15 Nm-1 

ci2 512×103 Nm-3 480×103 Nm-3 

ci3  2.46×109 Nm-5 

Scaling factor a0 0.0125 m 

Equivalent resistance of the electrical circuit RZ 1.1×106  

Equivalent capacity of the electric circuit CP 72 nF 

Electromechanical constant of piezoelectric converter kP 3.98·10-5 N/V 

 

For the first stage of the numerical experiments, the effectiveness of the energy har-

vesting of the system with a switched barrier was compared to solutions that are based 

on two and three wells. The formal basis for a comparison of the energy generation effec-

tiveness involves diagrams of the effective values of the voltage that are induced at the 

piezoelectric electrodes in the steady state [5,43]. Based on preliminary computer simu-

lations, it was established that the steady state of the energy harvesting system occurs 

after 450 periods of the source of the mechanical vibrations. On the other hand, the 
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effective value of the voltage recorded on the piezoelectric electrodes was calculated in 

relation to the time sequences with a duration of 150 periods of the mechanical vibrations 

that affect the energy harvesting systems. On considering the direct comparison of the 

results obtained, the effective value diagrams were plotted that assume the same external 

load conditions and computer simulation settings. The presented results of model tests 

were obtained for zero initial conditions. For each identified diagram, the mean values 

were calculated in the individual bands for the variation of the dimensionless excitation 

frequency that affect the energy harvesting systems (Fig. 3). 
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Fig. 3. Diagrams for the RMS values of the voltage induced at the piezoelectric electrodes: system with 

a) two wells, b) three wells, and c) a switchable potential barrier. Relevant parameters are indi-

cated in each figure. 

 

 

It is clear that the average value is a subjective measure, but this enables direct com-

parisons of the values of the induced voltages at the piezoelectric electrodes in the given 

variation bands . The results of the model tests are presented in the graphs (Fig. 3); they 

indicate that in the range of low values of the dimensionless excitation frequency  [0, 
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6], the higher voltage values are registered in a system with a switched potential barrier. 

This situation occurs in relation to the relatively large amplitudes p = 0.5 for the external 

load. If the mechanical vibrations of the object from which the energy is recovered are 

small, i.e. p = 0.1, then the effective values of the voltage induced at the piezoelectric elec-

trodes of the system with switched potential can be ten times higher. In the case of the 

impact on the energy harvesting systems with high frequencies  > 10, the low voltage 

values where uRMS < 1 are recorded at the piezoelectric electrodes (Figs. 3a and 3c). Only 

in the case of the system with the three-well potential barrier is uRMS > 1 (Fig. 3b). The 

next part presents the results of the computer simulations that show the influence of the 

dimensionless amplitude of the mechanical vibrations p on the structure of the bifurcation 

diagrams, which is in relation to the different locations of the minima of the two-well po-

tential. 

 

3.1. The influence of the excitation amplitude on the dynamics of the system 

  

From a theoretical point-of-view, the bifurcation diagrams can be plotted that use sev-

eral methods. One of the most popular methods is based on the identification of the local 

minima and maxima of the time sequence. The same results will be obtained if the steady 

state diagram of a nonlinear dynamical system is identified from the phase trajectory. 

Nevertheless, in this case, the points that are depicted in the diagram represent the inter-

section of the trajectory with the displacement axis of the phase plane. In our case, the 

bifurcation diagrams presented in Fig. 4 are drawn based on the fixed points of the Poin-

caré cross-section.  
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Fig. 4. Examples of bifurcation diagrams that show the effect of the dimensionless amplitude p of me-

chanical vibrations, which affect the energy harvesting system. Parameters of a) - d) cases are 

indicated in the figures 

 

At first glance, the branches of the bifurcation diagrams are shown to resemble blurry 

graphic structures, which suggests the occurrence of chaotic or quasi-periodic solutions 

in a wide range of variability of the dimensionless frequency . However, the periodic 

solutions with the relatively large periodicity are seen to dominate in the presented sam-

ple diagrams. The blurring of the diagrams, visible on magnifications, is primarily related 

to the presence of the transient processes that are triggered at the moments of cyclic 

switching of the potential barriers. Their presence can be identified by the analysis of 



15 
 

graphical images of the time sequences for the generalized x-coordinate. Another reason 

for the appearance of the additional points on the diagram relates to the adoption of a 

time interval that is too short, in which the extinction of the transient processes or unsta-

ble chaotic solutions arise. It is also worth considering the presence of unstable periodic 

solutions [44–46], which are most often attracted to a stable periodic orbit over time. 

Based on the identified diagrams of the effective voltage values induced at the piezoelec-

tric electrodes, it can be concluded that, for low values of the dimensionless amplitude of 

the mechanical vibrations p < 4, the highest voltage values are recorded in the range of 

the low frequencies   [0.3] (Figs. 4a to 4c). 

However, alongside an increase in the level of mechanical vibrations that affect the sys-

tem, the harmonic components in the range of the high values  < 7 are excited (Fig. 4d). 

The next part presents the results of numerical experiments that provide examples of cha-

otic solutions; these are visualized by means of Poincaré sections, time sequences, and 

Fourier frequency amplitude spectra. Time events when the dynamics of the energy har-

vesting system are mapped with a two-well potential are highlighted with light yellow 

rectangles in Fig. 5. The obtained results of the computer simulations indicate that, in a 

system with a switched potential barrier, there is a special case of the nonlinear dynamics, 

which is manifested by the cyclical occurrence of chaotic and periodic solutions with a 

periodicity of 1T. Such behavior of the system dynamics is confirmed by the values of the 

estimated DC correlation dimensions and the box-counting DB dimensions of the Poincaré 

cross-sections, which are diametrically different. Their values suggest that the DC correla-

tion dimension characterizes the dynamics of the energy harvesting system with switched 

potential barriers in the long term. From a theoretical point-of-view, we are dealing with 

a predictable solution because the periodic and chaotic solutions cyclically repeat.  

For this reason, DC takes small values that approximately equal to zero. While DB ex-

ceeds the value of 1 relatively little, which clearly proves the presence of a chaotic 
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solution. The system damping has a significant influence on the value of the box-counting 

dimension. In our simulations, we assumed a high value of the energy dissipation coeffi-

cient. This was chosen so that the transient processes caused by the switching of potential 

barriers would fade out relatively quickly. In the diagrams of Fig. 5a, we deal with the 

chaotic solutions, in which the potential is mapped with two wells. On the other hand, the 

examples illustrated in the graphs of Fig. 5b show the situations of a chaotic solution, in 

which the three-well potential barrier is active. The plotted Fourier amplitude frequency 

spectra clearly indicate the dominance of the harmonic component, which corresponds to 

the frequency of the mechanical vibrations that affect the energy harvesting system. Re-

gardless of the nature of the solution, the identified Fourier spectra show the excitation 

of the harmonic components in a wide range of variability, in the band that is located be-

low the dominant frequency. In the examples of Fig. 5b, in the vicinity of the frequency of 

the excitation source, the harmonics are affected that are distant from the fundamental 

frequency by a value equal to the frequency with which the potential barriers are 

switched. 
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Fig. 5. Sample images of the chaotic solutions in terms of the corresponding time series, phase por-

traits, and Fourier spectra. The white and yellow backgrounds of the time series indicate the 

applications of alternative potentials. Parameters of a) and b) cases are indicated in the figures 
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Fig. 6. Sample images of the periodic solutions in terms of the corresponding time series, phase por-

traits, and Fourier spectra. Parameters of a) – d) cases are indicated in the figures. The white 

and yellow backgrounds of the time series indicate the applications of the alternative potentials.  

 

Exemplary results that illustrate the periodic responses are presented in the graphs of 

Fig. 6. Bearing in mind that, in the tested energy harvesting system we deal with cyclically 
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switched potentials, the obtained results were compared to the steady states of the time 

windows that correspond to the interaction of the active barriers. These solutions are de-

picted in the form of orbits, which are drawn with dashed lines. Poincaré points are high-

lighted for each case on the phase trajectories. Based on the number of these points, the 

periodicity of the solution is identified. Regarding systems with switched potential barri-

ers, this tool is shown to not live up to expectations. This situation occurs because there 

are additional points that are directly related to the transient processes, which are initi-

ated by the switching of potentials. Therefore, all the points located outside of the curve 

represent the phase trajectory that should be treated as numerical artifacts.  

In the range of low values of the dimensionless frequency for the mechanical vibrations 

, regardless of the value of the amplitude p, we deal with the responses whose trajecto-

ries in the steady state are given as orbits (Fig. 6a). The relatively small changes in  es-

sentially affect the order (Fig. 6b) and the number of "visited" wells by the phase trajec-

tory. In general, these denote solutions that are characterized by a relatively low energy 

harvesting effectiveness, which is confirmed by the diagram of the effective values of the 

voltage that is induced on the piezoelectric electrodes. This is the case because, despite 

the large orbit in the global terms, the solutions corresponding to the individual switching 

cycles are located inside the well. A similar behavior for the energy harvesting system also 

occurs in the case shown in the graphs of Fig. 6c. 

Low harmonics dominate in the amplitude-frequency spectra of such solutions, which 

are a multiple of the frequency with which the potentials are switched (Fig. 6a). However, 

in relation to the higher values of the excitation frequency  (Fig. 6c), the Fourier spec-

trum is dominated by the harmonic components that correspond to the frequency of ex-

citation  and switching potentials S. Alongside the level of the mechanical vibrations 

that affect the energy harvesting system, the zone of the solutions of this nature becomes 
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narrower and shifted towards low values of  (Fig. 4). With regard to the solutions char-

acterized by the large orbits surrounding the wells of the potential barriers (Fig. 6d), in 

the amplitude-frequency spectra, the dominant harmonic component corresponds to the 

frequency of the mechanical vibrations that affect the energy harvesting system. In its vi-

cinity, the components are excited and the values of which are reduced or increased based 

on the value of the potential switching frequency S. 

 

3.2. Influence of the potentials switching frequency on the dynamics of the system 

 

The results of the numerical experiments that illustrate the influence of the frequency 

S of the switching potential barriers on the nature of the solution are presented below. 

Model tests were performed with the assumption that a constant dimensionless ampli-

tude p represents the mechanical vibrations. The results were visualized in the form of 

correlated bifurcation diagrams and the uRMS voltage induced at the piezoelectric elec-

trodes. In addition, the effectiveness of harvesting energy for individual bands with a var-

iability of the dimensionless frequency of the external load  was estimated. 

In the range of low switching values for the potential barriers S < 0.1, periodic solu-

tions dominate in the bifurcation diagrams. Responses with a periodicity of 1T are ob-

served in the range for the very small values of S. As the frequency of the potential 

switching increases, the single periodic solutions (Fig. 7a) evolve responses with a large 

or very large periodicity (Fig. 7b). It is noteworthy that the area of high frequencies for 

the external mechanical vibrations affect the system; in fact, we are dealing with an energy 

harvesting effectiveness that is practically zero, because the estimated values of the volt-

age uRMS is less than 0.2.  
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Fig. 7. Examples illustrating the influence of S on the structure of the bifurcation diagrams for con-

stant value of dimensionless amplitude p=0.1. Parameters of the corresponding cases a)-f) are 

indicated in the figures.  
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If the frequency of potential switching is equal to S = 0.03, there is a much higher ef-

fectiveness for the energy harvesting in the band  > 8 (Fig. 7c). Then, on the diagram of 

the uRMS voltage values, an extra branch appears, which indicates an additional coexisting 

solution, which is characterized by a high periodicity. Alongside an increasing frequency 

for the switching potentials S, the initially dominant periodic solutions with 1T periodic-

ity evolve in response to the large or very large periodicity. This behavior for the energy 

harvesting system is observed until S  0.15. From then on, the bifurcation diagram is 

dominated by the solutions with an unpredictable nature that arise in a wide range of 

variability for the dimensionless excitation frequency  (Fig. 7d). In this case, the basically 

similar average voltage values are observed in the individual variability bands . This be-

havior for the energy harvesting system occurs until the value of S  2.5 is reached. A 

further increase in S causes a decrease in the chaotic solutions and the appearance of the 

periodic solutions, the responses of which are limited by a two-well potential barrier (Fig. 

7e). The mean values that are recorded in the individual bands of  variation are more 

than two times smaller than the case depicted in the graphs of Fig. 7d. 

However, a similar behavior is observed when S = 4; although, the effective values of 

the voltage induced at the piezoelectric electrodes are much lower in this situation. For 

each of the cases, the results of which are presented in the graphs of the numerical exper-

iments (Fig. 7). Here, the energy harvesting effectiveness index was determined, which 

was calculated as the mean uMEAN in a given variation band . Moreover, the light green 

color distinguishes the zones in which the RMS voltage values uRMS are greater than 1. On 

this basis it was found that, regardless of the S value, the highest values of the voltage 

induced on the piezoelectric electrodes are located in the band   [0, 3]; the case of S = 

1 is excluded from this statement. Next, exemplary images of the phase trajectories for the 

periodic solutions are presented (Fig. 8). If the frequencies S of the potential switching 
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are low and the dimensionless frequency of the mechanical vibrations that affect the en-

ergy harvesting system is located within the band   [0, 1], then the orbits of the periodic 

solutions with their geometric shape are similar to the responses presented in the dia-

gram of Fig. 6a. As for the remaining cases, solutions with lower vibration amplitudes for 

an elastic cantilever beam are involved. At the moment of activation of the two-well bar-

rier, the phase trajectory is precipitated. However, with the passage of time, the transi-

tional processes are extinguished relatively quickly. The orbits of the solutions in the tem-

porary steady states are visualized using a dashed curve.  

The expression "temporary steady states" should be understood as meaning such a dy-

namic state of the system, which occurs in relation to the active potential barrier. For ex-

ample, in the case depicted in the graphs of Fig. 8a, the periodic orbits with a periodicity 

of 1T, which correspond to the temporary steady states, are located in the extreme wells 

of both potential barriers. Two components dominate in the amplitude-frequency spec-

trum, which represent the frequencies of the mechanical vibrations  and the switching 

frequencies of the potentials S. In addition, a number of the harmonic components in 

their vicinity are excited, but their amplitudes are much smaller. A similar nature of the 

response occurs that accounts for the case shown in the graphs of Fig. 8b. Nevertheless, 

this time temporary solutions, also with 1T periodicity, are located in the central well and 

within the extreme potential barriers. The shape of the Fourier spectrum is similar to the 

spectrum of Fig. 8a; however, the amplitudes are much higher. Alongside the increase in 

the S value, a limitation of the vibrations of the elastic cantilever beam is observed. None-

theless, the orbits of the solution can assume to have complex geometric structures as 

well as classic oval shapes. In the case of Fig. 8c, a global periodic solution with a perio-

dicity of 2T arises. Regarding the higher values of S, quasi-periodic solutions are most 

often used (Fig. 8d). 
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Fig. 8. Examples illustrating the influence of S frequency on the periodic solutions in terms of the cor-

responding time series, phase portraits, and Fourier spectra. Parameters of a)-d) cases are in-

dicated in the figures. The white and yellow backgrounds of the time series indicate the appli-

cations of the alternative potentials 
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Fig. 9. Examples illustrating the influence of S frequency on the chaotic solutions in terms of the cor-

responding time series, phase portraits, and Fourier spectra. Parameters of a)-d) cases are in-

dicated in the figures. The white and yellow backgrounds of the time series indicate the appli-

cations of the alternative potentials 

 

If the frequency of the potential switching occurs at low values S < 0.1, then the zones 

of the chaotic solutions do not change their position in principle (Figs. 7a - 7c). In the 
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Poincaré cross-sections that are drawn, it is possible to distinguish the geometric struc-

tures multiplied and deformed by the vector field (Figs. 9a and 9b). It is also worth noting 

that the chaotic solutions occur when the energy harvesting system is mapped with a two-

well potential. In the amplitude-frequency spectra, it is difficult to distinguish between 

the frequency of the excitation  and the switching potentials S for any cause-effect re-

lationships. The behavior is different if the switching of the potential occurs quickly (Figs. 

9c and 9d). Then, in the amplitude-frequency spectra, the additional harmonics are ex-

cited, the components of which are proportional to the frequency of the load that affects 

the energy harvesting system. 
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Fig. 10. Examples illustrating the influence of the frequency of the potential switching S. Parameters 

of a)-d) cases are indicated in the figures. The white and yellow backgrounds of the time series 

indicate the applications of the alternative potentials  

 

Here we indicate that the periods of the two-well potential, which have an impact on 

the system, were not distinguished in the light yellow representing the time responses of 
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the vibrations of the flexible cantilever beam. This was accomplished because the fre-

quency of switching the barriers is so high that the FS1 time diagram takes the form of a 

horizontal line. Chaotic solutions occur in a wide range of  variability (Fig. 10), which 

indicate the presence of cause-and-effect relations between the frequency of the source 

of excitation  and the switching of potential barriers S. Simultaneously, the appropriate 

dependencies that enable an estimation of the induced locally dominant harmonics are 

included in the images of the plotted Fourier spectra. It is noteworthy here that only in 

the case of high frequencies S is the dominate components those that represent the load 

that affects the energy harvesting system. 

 

3.3. Influence of the sequence of potential barriers switching  

 

One of the basic properties of the nonlinear dynamical systems is its sensitivity to 

changing initial conditions. This feature is manifested by the possibility of the coexistence 

of many solutions with regard to the same load conditions affecting a nonlinear system. 

With this in mind, numerical experiments were performed to assess the impact of the se-

quence of switching on the potential barriers. The results of the model tests presented 

below were related to the influence of the sequence of switching on the potentials on the 

geometric structure of the bifurcation diagrams (Fig. 11). By the expression "sequence of 

switching on", we can understand the potential characterizing the energy harvesting sys-

tem at the initial moment  = 0. The results of the computer simulations presented so far 

have been obtained when, at the initial moment, the dynamics of the energy harvesting 

system is limited by the two-well FS1 potential barrier. This case is illustrated by the po-

tential switching cyclogram plotted in the graph of Fig. 1a. Bearing in mind which poten-

tials are active for zero initial conditions, the FSi symbols are presented in the graphs. 
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Number 1 represents a two-well potential, while the digit 2 corresponds to the three-well 

potential. 

In the first stage of the model research, the impact of the sequence of switching on the 

potentials on the structure of bifurcation diagrams, and the effective values of the voltage 

induced on the piezoelectric electrodes, were assessed. The obtained results of the nu-

merical experiments indicate differences in the images of the bifurcation diagrams. How-

ever, they are noticeable in the range of higher values for the variability of the control 

parameter  > 6. In the range of low values of  < 6, we can basically discuss the topolog-

ical similarity of the plotted diagrams. A direct comparison of the effective values of the 

voltage induced on the piezoelectric electrodes, and the energy harvesting in the form of 

average values in the individual bands of variability for the control parameter , do not 

show such differences anymore. In particular, the values identified with respect to the 

higher potential switching frequencies (Figs. 11b and 11c) assume similar levels. It is even 

possible to state that they are practically the same and that the differences are within the 

error limit of the numerical calculations. 

With regard to the low switching frequencies S < 0.01 (Fig. 11a), it is necessary to 

perform long-term numerical calculations that consider a very large number of load peri-

ods acting on the system. The operation time of computer simulations that is too short 

can provide the results characterizing the vibrations of a flexible cantilever beam that is 

realized in relation to a single potential. Similar values for the average voltages induced 

at the piezoelectric electrodes, in the individual bands of the variability of the control pa-

rameter , suggest the presence of the same solutions. This is regardless of the order in 

which the potential barrier was activated at the initial moment. Bearing in mind the veri-

fication of the hypothesis that is formulated in this way, the responses of the periodic and 

chaotic solutions are presented in the following section, with reference to the same load 

characteristics and switching frequency. 
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Fig. 11. Examples illustrating the influence of S on the structure of the bifurcation diagrams for con-

stant value of dimensionless amplitude p=0.3. Parameters of the corresponding cases a)-c) are 

indicated in the figures. 
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In relation to the images of the phase trajectories for the periodic solutions, the influ-

ence of the sequence of switching on the potentials is not noticeable in the range of low 

values of S (Fig. 12a). The situation is similar with regards to the amplitude-frequency 

spectrum. It is noteworthy here that the character of the solution is decisively influenced 

by the dominant harmonic component of the Fourier spectrum, which is equal to the fre-

quency S. Significant differences appear in the generalized coordinate time responses. 

The plotted time sequences show topological similarity, but a time shift is observed for 

the signal, the value of which is equal to the potential switching period. When the poten-

tials change with a high frequency, there is virtually no time shift in the signal (Fig. 12b). 

The amplitude-frequency spectra also show no significant differences. On the other hand, 

the orbit of the solution is located in another well of the potential barrier. 

In the case of the chaotic responses, the images of the phase trajectories as well as the 

amplitude-frequency spectra do not show significant differences. Such behavior for the 

solutions is observed in the case of small values of S (Fig. 13a). Significant differences 

appear when comparing the time sequences directly. It is noteworthy that, at its basis, it 

is difficult to determine the size of the shift in the time sequence, as was the case for the 

periodic solution (Fig. 12a). These nuisances are caused by the fact that the chaotic re-

sponses de facto represent the composition of many unstable periodic solutions. For this 

reason, an unambiguous and precise determination of the shift of time sequences may 

even turn out to be impossible. A detailed analysis of the Fourier spectra shows the dif-

ferences of the excited harmonic components located in the vicinity of the excitation fre-

quency  and the switching of the potential barrier S (Fig. 13a). 
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Fig. 12. Examples illustrating the influence of S frequency on the periodic solutions in terms of the 

corresponding time series, phase portraits, and Fourier spectra. Parameters of a) and b) cases 

are indicated in the figures. The white and yellow backgrounds of the time series indicate the 

applications of the alternative potentials 
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Fig. 13. Examples illustrating the influence of S frequency on the chaotic solutions in terms of the 

corresponding time series, phase portraits, and Fourier spectra. Parameters of a) and b) cases 

are indicated in the figures. The white and yellow backgrounds of the time series indicate the 

applications of the alternative potentials 
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Significant differences occur when the potential barriers switch at high frequencies. 

This is especially noticeable in the images of the Poincaré cross-sections as well as the 

values of the correlation and box-counting dimensions (Fig. 13b). The situation is similar 

in relation to the drawn time series of the generalized coordinates and to the amplitude-

frequency spectra. It is noteworthy that the common denominator of the harmonic Fou-

rier spectrum distribution is the dominance of two frequencies. The values of these fre-

quencies correspond to the mechanical vibrations that affect the energy harvesting sys-

tem  and the switching frequency of the potentials S. Nevertheless, if at the initial mo-

ment  = 0 the barrier is mapped with the three-well potential, the amplitudes of both 

harmonics are comparable. It should be clearly indicated here that such a comparison 

cannot be precise because the amplitudes of the Fourier spectrum are calculated with a 

certain accuracy. However, the two spectra differ in the bandwidth of the excited compo-

nents (Fig. 13b). 

 

4. Summary and final conclusions 

 

This paper presents a detailed study on the dynamics of a new design solution for the 

energy harvesting system with switchable potential barriers. The presented results of the 

numerical experiments were limited to zero initial conditions. This approach to the pub-

lished results of the computer simulations is supported by the fact that at the time  = 0 

the flexible cantilever beam is in a static equilibrium position, which in fact corresponds 

to zero initial conditions. As a measure of system effectiveness, we adopted URMS because 

for different resistances the measured power will also differ. It is therefore possible to 

easily convert the theoretical results obtained by us to a wide range of practical applica-

tions depending on the specific energy receiver. Our work is therefore a general approach 

possible to implement in the analysis of various types of energy harvesters. Based on the 
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numerical experiments of the energy harvesting system with a switched potential barrier, 

it is possible to formulate the following conclusions: 

• From the construction point-of-view, energy harvesting systems with 

switchable potential barriers should have large values for the damping coef-

ficients. This is because their high values minimize the influence of the tran-

sient states caused by the switching potentials. 

• In the range of low and high switching frequencies of the potentials, periodic 

solutions dominate in the bifurcation diagrams. With regard to a large S, the 

effective values of the voltage at the piezoelectric electrodes are significantly 

reduced. 

• The highest effective values of the voltage induced at the piezoelectric elec-

trodes are observed when, in the entire range of variability of the control pa-

rameter , chaotic solutions are involved. Such solutions can be move effec-

tive in aperiodic passing the potential barriers and reaching large output 

voltage in piezoelectric electrodes with relatively small excitation level. 

• In the range of small values of S, the potential characteristic that determine 

the dynamics of the system at the initial moment  = 0 is not significant from 

the point-of-view of the nature of the periodic responses. In the case of large 

values for S, the characteristic of the potential determining the dynamics of 

the system at the initial moment  = 0 causes the solution to “jump” to an-

other well. With regard to the chaotic solutions, the sequence of potential ac-

tivation is noticeable, especially in the range of large values for S. 

In the next step the sequence of potential switch in the energy harvesting system will be 

realized in experiments. The results could be studied by fast camera and/or target track-

ing procedure [47,48] to reveal the nature of dynamical solution. 
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